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1 Introduction

Innovators often need to make a tradeoff between exploitation and exploration in allocating inno-

vation resources. How they do it has a large impact on their productivity. Exploitation prioritizes

safe projects that innovators deem the most productive in the present. Exploration prioritizes high-

variance projects that would yield more information to improve allocation and productivity in the

future. Innovators need to make this tradeoff because they have incomplete information about

which projects will be productive. The purpose of exploration is to acquire information about

productivity—by allocating input to the projects that innovators have poor information about and

observing those projects’ output. Extensive theoretical literature, starting with seminal works of

Gittins (1979) and Weitzman (1979), has recognized the importance of exploration in resource

allocation for innovation and has theorized about optimal exploitation-exploration tradeoff.

Little research has studied empirically how innovators make this tradeoff. One reason is a lack

of data with sufficient granularity, which needs to contain resources allocated to, and output pro-

duced by, every research project in an innovator’s choice set. Another reason is the computational

challenge. Innovators typically allocate resources among lots of projects over horizons that last

years. Workhorse estimation methods for dynamic choice models, developed by an empirical liter-

ature starting with Pakes (1986) and Rust (1987), do not work well with large choice sets and long

horizons due to the curse of dimensionality.

Employing novel data and proposing a new estimation approach, this paper studies empirically

how a group of large scientific labs made the exploitation-exploration tradeoff. I find that a simple

model captures the labs’ decision-making and that the estimates of the model’s free parameters

suggest the labs explored extensively. I also find that, under counterfactual simulations, had the

labs not explored, their output quantity and citations would have decreased substantially.

These answers are nonobvious and important. They confirm intuition from theoretical liter-

ature about the value of exploration for resource allocation under incomplete information. They

also suggest sophistication in real-world decision-making—the labs took into account the dynamic

incentives to explore and acquire information in their decision-making, as they should. Moreover,

they have policy implications for the large innovation industry in which US spending per year ex-

ceeds $500 billion (Boroush, 2021). If these results extend to the whole industry in any degree,
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exploration of ideas makes a substantial contribution to innovation productivity through the chan-

nel of improving the resource allocation process, and has generated hundreds of billions of dollars

of economic value through this channel.

The empirical setting of this paper is a group of large structural biology labs funded by an NIH

program of $1.3 billion over a horizon of sixteen years. This is an ideal setting to study because it is

realistically complex and affords highly granular data. Moreover, the labs thoroughly documented

how they used an AI-assisted approach to analyze information observed during past allocations

and to inform future decision-making, providing guidance for modeling. A few additional NIH

policy features, such as restricting the pool of projects the labs could choose from, also make this

setting particularly clean for model identification.

The main data is the labs’ resource allocation and output across projects. I observe, at the

daily frequency, the input allocated to, and output produced by, each research project that each

lab ever attempted over the sixteen-year horizon. A project in this setting is the determination

of the three-dimensional structure of a protein molecule, and the molecule uniquely identifies the

project. A unit of input is a distinct experimental trial on the project. The output is whether the

trial produced a publication of the structure and the number of citations and downloads of that

publication. Those are observed output from input actually allocated. The labs instead made

allocation decisions based on their beliefs about output from potential allocations. To construct

the labs’ posterior beliefs about output, a key model ingredient, I made a best-effort replication

of the labs’ AI-assisted approach of belief formation, which was based on analyzing information

observed during past allocations.

To recover how the labs made the exploitation-exploration tradeoff, I estimate a dynamic model

of the labs’ decision-making, assuming the labs used a simple index to approximate the complex

underlying value function. This kind of index is well-studied in theory (Lai & Robbins, 1985;

Agrawal, 1995; Katehakis & Robbins, 1995; Auer et al., 2002; Bubeck & Cesa-Bianchi, 2012)

and well-used in practice (Yang et al., 2020; Scale, 2021; Zhang, 2021) but has not been applied

to estimation of empirical models of decision-making. Under my model, in each period a lab first

analyzes past information to form posterior beliefs about output from potential allocations. The

lab then uses this posterior to compute a simple index to approximate the value function associated

with allocating input to each project. The lab then allocates input to projects with the highest index
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values. The index is simple to compute because computation only requires information available

to the labs in the current period. Workhorse dynamic models based on backward induction, on

the other hand, tie the value function to the evolution of information in future periods and, con-

sequently, suffer from the curse of dimensionality as the number of periods grows. Due to its

computational simplicity, index approximation is also a more empirically plausible model of the

labs’ decision-making than backward induction.

My model modifies a well-used index called Upper Confidence Bound (UCB). Intuitively, UCB

approximates the upper confidence bound of an allocation’s posterior expected payoff. Allocating

input to a project that the lab has poor information about has a high UCB. As the lab allocates

more input to the project and has better information about its productivity, the UCB of further

allocations decreases. To proxy for the unobserved factors during the allocation process, such as

project-specific learning staying with individual researchers over time, I make a modification to the

baseline UCB index. The modification is an additional term that captures time-discounting of the

value of older projects that the lab has attempted in the distant past. As robustness checks, I specify

many alternative models with other types of indices discussed in the theoretical literature. These

include the seminal Gittins (1979) index, which prescribes optimal decisions for some stylistic

dynamic allocation problems.

I validate the model in two steps. In the first step, I estimate the free parameters in the model

by maximizing the log likelihood of the observed allocation decisions. Identification of model

parameters is based on revealed preferences and is very intuitive. I gauge model fit by computing

the predicted likelihood of making the observed allocation decisions at convergence of the model.

In the second step, I use the estimated parameters from the model to forward simulate the labs’

entire history of input allocation and output. I compare the patterns of input allocated and output

from the simulated data to those from the actual data to determine whether the model could gener-

ate patterns similar to those in the actual data. I repeat this two-step procedure for the alternative

models to benchmark the fit of my main model against these alternatives.

I find my main model fits the data extremely well and captures the labs’ decision-making.

During the maximum likelihood step, the main model by far has the smallest magnitude of log

likelihood at convergence among the many alternative models I tested. With the same number

of parameters, its log likelihood at convergence is only 59% to 72% of the second best fit model
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across labs. On average, the main model predicts a 70% to 84% likelihood of allocating trials that

were actually allocated, and a smaller than 0.5% likelihood of allocating trials that were actually

not allocated, far better than any alternative model. During the simulation step, the main model

generates input allocation patterns and output that are very similar to those in the data. For all

labs, the deviations of the simulated output from the actual output are within 10%. The alternative

models fail to generate patterns matching the data as closely.

Based on this well-fitting model, I find that the labs explored extensively and that exploration

had a large impact on the labs’ productivity. Based on the estimates of the free parameters of

the model, I am able to reject the hypothesis that the labs did not explore at a 95% confidence

level for all labs. Moreover, I am able to reject the hypothesis that there were no unobserved

factors that impacted the labs’ incentives to explore a project over time at a 95% confidence level.

Counterfactual simulations show that exploration boosted the labs’ productivity substantially. Had

the labs not explored, they would have missed many low-hanging fruit and misallocated resources

towards less productive projects. As a result, their output quantity would have decreased by 51%,

and their citations would have decreased by 57%. The decrease is equivalent to forgoing at least

$650 to $720 million of economic value.

This paper contributes to the empirical literature on science of science. This literature has

studied extensively the nature of idea development and the value of experimentation (Cohen &

Levinthal, 1989; Henderson & Cockburn, 1996; Azoulay et al., 2011; Ederer & Manso, 2013;

Ganglmair et al., 2019; Krieger, 2021; Hoelzemann et al., 2022; Khmelnitskaya, 2022; Lane et al.,

2022), but few works have examined exploration of ideas as a micro-determinant of productivity

at this level of detail. This paper is a rigorous empirical counterpart to the theoretical literature

on resource allocation for innovation (Arrow, 1962; Roberts & Weitzman, 1981; Bergemann &

Välimäki, 1996), and its findings add to the discussion of the impact of policies on innovation

productivity (Jaffe, 2002; Furman & Stern, 2011; Azoulay, 2012; Cantoni & Yuchtman, 2014;

Lane et al., 2015; Azoulay et al., 2019; Myers, 2020).

This paper also contributes to the empirical literature on single-agent dynamic choices. This

literature has relied on recursive and simulation methods for estimation (Pakes, 1986; Rust, 1987;

Hotz & Miller, 1993; Rust, 1994; Timmins, 2002; Aguirregabiria & Mira, 2010) which face signif-

icant computational challenges with large state-spaces and long horizons. This paper develops the
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index approximation approach to model dynamic allocations, which overcomes the computational

challenges in estimation. An extensive theoretical literature on dynamic allocation inspires this ap-

proach. Theoretical literature has often called dynamic allocation problems like that in our setting

“multi-armed bandits” and has studied models of optimal exploitation-exploration tradeoff in the

form of indices. Gittins & Jones (1979), Weitzman (1979), Lai & Robbins (1985), Whittle (1988),

Bergemann & Välimäki (1996), Bolton & Harris (1999), Auer et al. (2002), Keller et al. (2005),

Bubeck & Cesa-Bianchi (2012), and Russo et al. (2017) are some works in this literature. A couple

of empirical works have analyzed bandit-like problems in other economic settings (Miller, 1984;

Erdem & Keane, 1996; Crawford & Shum, 2005; Dickstein, 2018; Li et al., 2020; Caria et al.,

2020). The index approximation approach formalizes many methodological insights from those

earlier papers.

The rest of this paper is organized as follows. Section 2 discusses the empirical setting. Sec-

tion 3 describes the data. Section 4 builds the model. Section 5 describes model fitting. Section 6

shows model fitting results. Section 7 shows counterfactual results. Section 8 concludes.

2 Empirical Setting

The empirical setting of this paper is a group of large structural biology labs funded by a $1.3 bil-

lion NIH program from 2000–2015. This is an ideal setting to study for many reasons. First, this

setting captures the complexity of decision-making typical in resource allocation for innovation

and affords highly granular data. Second, the labs thoroughly documented how they used infor-

mation observed during past allocations to inform future decision-making, providing guidance for

modeling. A few additional NIH policy features also make this setting particularly clean for model

identification.

A particularly clean feature of this setting is that research projects are clearly defined and

distinct from each other, making it easy to compile highly granular data that associates input and

output with specific projects. Moreover, the labs recorded input allocation in discrete units, making

it easy to track the amount of input allocated to each project.

A project in this setting is the determination of the three-dimensional structure of a protein

molecule, and the molecule uniquely identifies the project. These projects are important research.
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Knowing a protein’s structure is often critical for developing drugs that target the protein. Proteins

consist of building blocks called amino acids. These amino acids are arranged into a chain, which

folds up onto itself, creating a three-dimensional structure (Hill & Stein, 2020, 2021). Figure 1

shows one structure, published by one of the labs in my data. Publications of protein structures

have aided the development of therapeutics such as oncology drugs (Van Montfort & Workman,

2017) and COVID-19 vaccines (Wrapp et al., 2020).

A unit of input in this setting is a distinct experimental trial of the project. Each trial is a

bundle of labor, capital, and materials associated with working on the molecule. A trial proceeds

in multiple sequential stages. The outcome of each stage is either a success or a failure. If a trial

succeeds in all stages, it produces a unit of output—a publication of the molecule’s structure. Trials

are very risky. 98% of trials in my data failed at various stages, and there were large variations in

trial outcomes even within projects.1 Output is thus a random variable. I will assume that a trial

stops if and only if the trial fails, which means the labs do not actively kill ongoing trials. This

assumption significantly simplifies the allocation problem and is mostly supported by the patterns

in the data.2

This setting captures a realistically complex resource allocation problem over a long horizon.

Figure 2 illustrates the decisions a structural biology lab faces. In each period, the lab decides

to allocate units of input among a portfolio of research projects. The portfolio contains older

projects the lab has worked on in the past, and the lab can draw new projects to include in the

portfolio. The objective is to maximize over the horizon welfare from the output. The lab or the

NIH determines the welfare from each unit of output according to some welfare weights unknown

to us the economists. A key challenge in the lab’s decision-making is that trial outcomes are very

noisy and the lab has incomplete information about which trials are likely to produce output.

The labs used information they observed during past allocations to inform decision-making

and thoroughly documented the process, providing guidance for modeling for this paper (Slabin-

1Much of the work in these trials involves trial-and-error of different combinations of experimental conditions for
physicochemical reactions. As a result, researchers often need to perform many trials for a project before successfully
producing a structure for publication. Luck is an important element in the process (Chruszcz et al., 2008).

2For 15% of the trials, I observe the reasons for trial terminations. The reasons are mostly exogenous, e.g., “expres-
sion failed”, “purification failed”, “poor diffraction” and so on. In some cases, the trial termination reason is “duplicate
target found” when the labs found a highly similar project was already published. Upon further investigation, I find
the ongoing trials in most of those cases were allowed to keep going. Some of those trials were even successful at all
stages and produced publications.
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ski et al., 2007a,b; Jaroszewski et al., 2008; Price et al., 2009a,b; Babnigg & Joachimiak, 2010;

Jahandideh et al., 2014). Figure 3 illustrates the process. As a lab performs trials and observes their

outcomes, it collects and organizes the information about the trials’ characteristics and outcomes.

The lab then analyzes that information, fitting machine learning models to draw correlations be-

tween trial characteristics and outcomes. The fitted models allow the lab to predict a new trial’s

probability of producing output based the trial’s characteristics. That prediction forms the lab’s

posterior belief about the trial’s output. The lab then allocated trials based its posterior beliefs

about different trials’ output and its welfare weights. As the lab performs more trials and observes

more information over time, it refits its machine learning models periodically.

Several NIH policy features simplify this setting and mitigate worries about modeling and

identification, one of them being limits on the labs’ choices of projects. The NIH periodically drew

families of novel molecules and solicited nominations of molecules from the biomedical research

community for the labs to work on. The labs could also pursue projects of their own interest but

had to communicate with the NIH about those projects well in advance (NIGMS, 2007a,b, 2011b).

Those processes limited the projects in the labs’ choice sets, allowing me to construct choice sets

that align well with the actual ones.

Another feature is the collaborative nature of the grant program, which mitigates worries about

competition between the labs confounding with the exploitation-exploration tradeoff. The NIH

funded the program, called the Protein Structure Initiative (PSI), through a collaborative U01

mechanism, rather than the competitive R01 mechanism. Throughout the program, the labs faced

little competition for funding (and research questions due to the NIH assigning projects).3

The NIH also evaluated the labs’ productivity periodically based on a set of metrics,4 which

limited what the labs placed nonzero welfare weights on. Metrics included the quantity of struc-

tures published, novelty, biomedical importance, human proteins, eukaryotic proteins,5 and mem-

3A more typical lab faces additional tradeoffs due to competition. Hill & Stein (2021) found structural biology
labs traded off quality of research and speed of publication because of competition to establish priority in publication.
However, they also found the structural biology labs in my data (labelled as “ structural genomics (SG)” labs in their
paper) were not as motivated by competition to sacrifice quality for speed.

4The NIH published statistics on those metrics online. The archived versions of those publi-
cations can be found by searching the urls http://targetdb.pdb.org/metrics/milestonestables.html and
http://targetdb.pdb.org/Metrics/SummaryTable.html on the Internet Archive.

5Eukaryotes include all living organisms other than the eubacteria and archaebacteria. An eukaryote is an organism
consisting of a cell or cells in which the genetic material is DNA in the form of chromosomes contained within a
distinct nucleus.
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brane proteins.6

Moreover, an exogenous change of NIH’s preferences over the metrics in 2009 provides a nice

robustness check. A well-fitting model of the labs’ decision-making should capture this shift in

its estimates of the labs’ welfare weights. Before 2009, the NIH had a strong preference for the

quantity of publications and novelty (NIGMS, 2008a, 2011a). By mid-2008, the lack of emphasis

on biomedically important projects had sparked heated debates in the community (Petsko, 2007;

Moore, 2007); this prompted the NIH to boost its preference for biomedically important projects

since 2009 (NIGMS, 2007c, 2008b, 2009a,b). To facilitate the change, the NIH partnered with

outside researchers to identify biomedical important projects and gave more attention to biomedical

importance in its evaluation process.

In addition, the NIH’s close involvement in those labs makes it reasonable to assume away the

principal-agent problem, which further simplifies the setting.

3 Data

The main data in this paper is those structural biology labs’ resource allocation and output across

projects. I observe, at the daily frequency, the input allocated to and output produced by each

research project each lab ever attempted over the horizon. Highly granular data is available thanks

to an NIH requirement for data collection and sharing.7 Available in this data are all projects in

a lab’s portfolio, all trials performed on each project, dates and outcomes of stages of each trial,

output of structures (if any), and identifiers of projects and structures to link to other bioinformatics

databases. Labs could see each others’ data through a shared information system at all times.

This section describes the key variables on input allocation, observed output, and the labs’ pos-

terior beliefs about output. Table 1 shows a list of the key variables and their sources. Appendix A

describes variable construction and shows additional variables.
6Membrane proteins are proteins found in the cell membrane. Membrane proteins are particularly hard for structure

determination due to their physicochemical properties.
7This data includes 27 labs that received NIH funds and 13 international labs that contributed data on a voluntary

basis. A lab was typically a consortium that had sub-labs handling different stages of the trials. The number of sub-labs
captured in this data is 147.
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3.1 Input Allocation

The input allocation data consists of units of input (trials) each lab allocated to individual projects

on each day, and those projects’ and trials’ characteristics.

A project is identified by the distinct biological molecule it studied. I use the letter i to denote

a project. The data contains 335,553 projects.

A trial is identified by its association to a specific project and the order in which the trial

occurred. I use ji to denote the jth trial of project i. The data contains 961,260 unique trials and

captures 3,783,026 records of trial progress updates at the daily level. 99% of these records were

between 2000 and 2015. Figure 4 shows a distribution of the number of trials allocated to each

project. The distribution has a prominent right skew. 71% of projects had only a single trial. In

contrast, less than 4% of projects had more than 10 trials. This pattern is consistent with extensive

exploration, where the labs sampled projects they had poor information about in input allocation

to learn which of those projects would be promising.8

Different labs in this data operated on very different scales, and I will focus on analyzing the

four largest labs.9 These four labs accounted for 71% of the projects and 85% of the trials in this

data. The other labs were considerably smaller and had high variations in their research interests

and funding levels.

I use nlt to denote the amount of input available for allocation at lab l on day t and let nlt equal

the actual number of trials allocated at the lab on that day. For the four largest labs, nlt has a mean

of 35 trials per day per lab.

Several variables capture a lab’s rationale for allocating a trial to a project, and these variables

correspond to the NIH’s evaluation metrics for the labs’ productivity, among which a key metric is

the novelty of the project. The variable noveli is a binary and is equal to 1 if the labs cited novelty

8The high proportion of single-trial projects could be consistent with an allocation model that only exploits, but
that would require the first trial of each project to provide a lot of information about the project. It is possible that the
labs started the first trials of a lot of new projects thinking the projects were high-payoff. Then they learned enough
information about each project’s potential from a single trial to identify low-payoff projects whose future trials were
unnecessary. However, given that trial outcomes were very noisy, it is unlikely that the first trial would convey so
much information to generate the observed patterns. Moreover, with updating of posterior beliefs, it is unclear how the
labs sustained the belief that new projects were high-payoff under this model over time, given that most new projects
turned out to be low-payoff ones after a single trial.

9They are Joint Center for Structural Genomics (JCSG), Midwest Center for Structural Genomics (MCSG), New
York Structural Genomics Research Consortium (NYSGRC), and Northeast Structural Genomics Consortium (NESG).
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as a reason to allocate trials to project i in the information system.10 When the labs cited a project

i as being novel, they often emphasized that there were no or few already published structures in

the same protein family as i. I therefore construct prevStructiy, a continuous variable that captures

the changes over year (subscripted with the letter y) of the number of published structures in the

same protein family as i.

Another key NIH evaluation metric is the biomedical importance of the project. The variable

biomedi is a binary and is equal to 1 if the labs cited biomedical importance as a reason to allocate

trials to project i in the information system.11 As an additional proxy for the biomedical importance

of a molecule, I look into the number of publications related to the molecule, including structures

and other types of publications. I construct prevPubiy, a continuous variable that captures the

changes over year of the number of publications on molecule i.

Additional NIH evaluation metrics correspond to whether the project was related to human

beings, eukaryotes,12 and the cell membrane. The variable humani captures how similar molecule

i is to any molecules from human beings.13 The variable eukaryotei captures how similar molecule

i is to any molecules from eukaryotes.14 The variable membranei is a binary and is equal to 1 if

molecule i is related to the cell membrane.

I also obtain the dollar value of funds each lab received as an alternative measure of input.

The variable f undingly captures the total amount of funds lab l received from the NIH in year

y. Funding information comes from two sources. First, the NIH released a series of funding

opportunity announcements (FOAs) directly tied to the grant program (NIH, 2019),15 which allows

me to search directly all grants associated with those FOAs on NIH RePORT database (NIH, 2021).

Second, labs sometimes received supplementary funds from the NIH so I also perform a direct

search of the labs’ names and abbreviations using RePORT’s advanced search functionality. I then

10The information system contains textual descriptions of why labs allocated trials to a project. The relevant fields
are populated for 84% of projects at the four largest labs. Construction of noveli and biomedi is based on keywords in
those descriptions. See the full list of keywords and additional details in Appendix A.1.

11Same as footnote 10.
12See definition in footnote 5.
13When a lab worked on a “human” molecule, often the molecule was actually from bacteria but was very similar

to a molecule from human beings and was much easier than the human molecule. Therefore, the right construction for
humani is molecule i’s degree of similarity to human molecules rather than being a human molecule itself. I learned
this from a conversation with an NIH program officer in charge of the grant program.

14Same as footnote 13.
15See the full list of FOAs in Appendix A.2.
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aggregate each lab’s sum of research grants by year from the search results. Figure 5 shows the

level of funding for the four largest labs.

3.2 Observed output

The main measure of output is the number of unique publications. A trial produced a publication

if it succeeded in all stages. I use a binary Yi jt to denote the outcome of trial ji on day t. Yi jt = 1

if the trial succeeded and produced a publication. Only 1.6% of trials in the data succeeded. I

also observe the outcomes of all stages of each trial and use a binary Yi jkt to denote the outcome

of stage k of trial ji on day t.16 I use these intermediate outcomes to construct the labs’ posterior

beliefs about output.17

Uniqueness of a publication is important because more publications do not necessarily mean

more welfare when lots of publications are duplicates of earlier ones. Duplicate publications hap-

pened in our setting because a lab often allocated multiple trials on the same project at roughly

the same time and sometimes more than one trial succeeded. These successful trials produced

structures of the same molecule often of very similar qualities. I will therefore only count the first

publication on each project in measuring a lab’s output. The data contains 15,848 publications

of structures, among which 10,501 are unique. This represents 15% of world output of structures

between 2000 and 2015.

I supplement the main output measure with the number of citations and downloads of each

published project. The variable citationiy captures the five-year citations and mentions of a project

i published in year y.18 The variable downloadim captures the number of downloads of a project i

16k = 0,1,2,3,4. Yi j0t = 1 if DNA was successfully cloned. Yi j1t is only defined when Yi j0t = 1 and is equal to 1
if protein was successfully expressed. Yi j2t is only defined when Yi j0t = 1 and Yi j1t = 1 and is equal to 1 if protein
was successfully purified. Yi j3t is only defined when Yi j0t ,Yi j1t ,Yi j2t = 1 and is equal to 1 if protein was successfully
prepared for studying its structure (through X-ray crystallography or NMR or cryo-EM). Yi j4t is only defined when
all previous stages were successful and is equal to 1 if the structure was successfully produced and deposited to the
Protein Data Bank (PDB) for publication.

17See Section 3.3 and Appendix B.
18When multiple structures of the same project were published, I take the mean of five-year citations and year of

publication of those structures. I do not take the sum of five-year citations because those structures were often cited
together.
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in month m between August 2007 and November 2013.19

The two measures capture quality in different dimensions. Citations in the academic literature

reflect the amount of follow-on research directly built on the published project. Downloads offer a

window into the more intangible, such as the amount of interest generated by the publication and

the use of the publication in developing new technologies in related fields (for example, DeepMind

(2020)).

Figure 6 shows the observed output for the four largest labs.

3.3 Posterior Beliefs about Output

A key model ingredient of this paper is the labs’ posterior beliefs about output from potential

allocations at the moment of making allocations.

My measures of the labs’ posterior beliefs about output are based on best-effort replications

of the labs’ documented approach of belief formation using information they observed during

previous allocations. Variable construction uses several hundreds of variables, coming from a

variety of sources. A full list of these variables is available in Appendix A.4.

The four largest labs formed and updated their posterior beliefs about whether a trial would

succeed through supervised machine learning (Slabinski et al., 2007a,b; Jaroszewski et al., 2008;

Price et al., 2009a,b; Babnigg & Joachimiak, 2010; Jahandideh et al., 2014). This involved using

machine learning models to fit observed trial outcomes (successes or failures) on those trials’

characteristics. The fitted model would be able to predict a new trial’s probability of success based

on the trial’s characteristics. The labs periodically refitted the models when newer trial data became

available to make updates. The labs started using this approach to form posterior beliefs as early

as the beginning of 2005, when they had accumulated a considerable amount of trial data in the

initial years of operation (Slabinski et al., 2007a,b). Over time and lab-wise, they used a variety of

models, ranging from logistic regressions to support vector machine to random forest. Jahandideh

et al. (2014) conducted a comparison study and found random forest worked best based on multiple

19This variable is not directly useful because downloads have strong lifecycle trends—downloads were high when
a structure just became published then fell over time—and comparing different publications at different stages of
their lifecycles is meaningless. In Section 3.3, I construct a variable corresponding to the five-year downloads to make
comparison across projects meaningful. For that variable, when multiple structures of the same project were published,
I take the mean of five-year downloads and year of publication of those structures. I do not take the sum of five-year
downloads because those structures were likely downloaded together as they were often cited together.
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metrics, including prediction accuracy.20

To mimic how the labs updated their posterior for trial success probability, I fit a series of

machine learning models over time between 2005 and 2015. To fit a model corresponding to the

labs’ posterior beliefs at time t, I use a training sample consisting of trial outcomes realized before

t and those trials’ characteristics. The characteristics include the ones the labs used and fall under

three categories:

• Physicochemical properties of the molecule based on scientific reasoning.

• Other characteristics of the project, such as novelty, biomedical importance, and the number

of prior publications on the molecule.

• Past successes and failures of trials on the same project.

I use random forest to fit each model. Appendix B.1 shows the details.

The fitted models allow me to construct two variables, the posterior expectation of the proba-

bility of success ÊF̃t
(pi jt) and the posterior variance V̂arF̃t

(pi jt). Let the probability of success of a

trial ji at time t be pi jt . The fitted model F̃t makes predictions about pi jt based on the trial’s char-

acteristics, and these predictions constitute the posterior belief about pi jt . The fitted model F̃t is a

random forest consisting of an ensemble of submodels, each called a decision tree. Each decision

tree fits the training sample independently and makes an independent prediction p̂ntree
i jt . The collec-

tion of these predictions forms the estimated posterior distribution. The mean of this distribution

is the posterior expectation ÊF̃t
(pi jt), and the variance is the posterior variance V̂arF̃t

(pi jt).

My best-effort replication may deviate from the labs’ actual posterior beliefs, but I do not

expect the deviations to bias estimation results of the allocation model. I note a list of possi-

ble deviations in Appendix B.1. One example is that the labs did not always predict V̂arF̃t
(pi jt).

When they did, the variable took the form of comparing predictions from multiple models side

by side (Slabinski et al. (2007a,b); Babnigg & Joachimiak (2010); Jahandideh et al. (2014)). It is

reasonable to believe the labs knew the value of analyzing the variation in predictions from dif-

ferent models, though they did not formally use a variable to represent that variation. ÊF̃t
(pi jt)

and V̂arF̃t
(pi jt) therefore contain errors in the sense they may differ from the labs’ actual posterior

20Based on my conversation with a project coordinator at one of the labs, the accumulation of trial data rather than
the choice of the machine learning model was the main driver in improving the quality of predictions.
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beliefs. But as long as the errors are random or at least not correlated with the actual allocation

decisions, they should not bias the estimates of the allocation model. The errors may be correlated

with the actual allocations if I fail to include in the training sample variables the labs actually used

to form beliefs or make allocations. To minimize this risk, I include in my training samples all

variables the labs ever mentioned using and all NIH evaluation metrics.

For the posterior beliefs about citations and downloads, I make the simplifying assumption that

the labs’ posterior beliefs stayed the same in all periods and were the same as the ground truth.

This is equivalent to assuming that the labs only had incomplete information about the possibility

of production and had perfect information about the kind of output produced if production does

happen. Given that the projects were very well-defined, this assumption is reasonable. Another

evidence in support of this assumption is that, unlike the probability of success of a trial, the labs

did not form and update their posterior beliefs about the number of citations and downloads of a

publication in a systematic way.

I use ridge regressions to model the posterior expectations about citations Ê(citationiy) and

about downloads Ê(downloadiy). To align well with the ground truth, these models have to be

able to make small prediction errors out of the training sample. Appendices B.2 and B.3 show

details of model fitting and visual evidence of out-of-sample model fit in cross validation.

Figure 7 shows the estimated posterior beliefs and provides descriptive evidence that the labs

explored high-variance projects in resource allocation and, in doing so, forwent some opportunities

to exploit projects with high posterior expected output.

Figure 7a shows the distribution of ÊF̃t
(pi jt) for trials the four largest labs actually allocated

versus that for a random sample of trials in those labs’ choice sets. While the distribution of

ÊF̃t
(pi jt) for the actual allocations is less right-skewed than that of the possible allocations, a con-

siderable proportion of actual allocations had extremely low posterior expected probabilities of

success. This is unlikely due to exhaustion of good possible allocations with high posterior ex-

pected probabilities of success. The actual allocations accounted for only 0.7% of the random

sample of the possible allocations.

Figure 7b shows the distribution of
√

V̂arF̃t
(pi jt). The figure shows that on average the actual

allocations had considerably more posterior variance in the probability of success than the possible

allocations, providing evidence that the labs allocated a considerable amount of resources to high-
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variance projects.

Figures 7c and 7d show that the distributions of Ê(citationi) and Ê(downloadi). Both show

the trials the labs allocated to were not very different from the trials the labs passed in terms of

expected citations and downloads they would generate upon publication. This suggests choosing

high-variance projects was associated with not being chiefly motivated by citations and downloads,

providing evidence that the labs allocated to high-variance projects for the sake of exploration.

4 Model

I present an estimable model of the labs’ allocation decision-making whose key feature is index

approximation of value function. Under this model, in each period a lab first analyzes past infor-

mation to form posterior beliefs about output from potential allocations. The lab then uses this

posterior to compute a simple index to approximate the value function associated with allocating

input to a project. The lab then allocates input to projects with the highest index values. This

model has the advantage of being computationally tractable and of being empirically plausible, in

the sense that the labs could have easily applied this model in actual decision-making.

I build intuition for the model as follows. First, I formalize the labs’ input allocation problem

into an objective function. I then discuss the intractability of a standard model of decision-making

based on backward induction. I explain how index approximation differs from the standard model

and why it is more tractable. I wrap up with a discussion of the theoretical foundation for index

approximation.

I define the main model as well as several alternative models for robustness checks at the end

of this section.

4.1 Objective Function

I formalize the labs’ input allocation problem into an objective function that maximizes welfare

from output over a finite time horizon. This objective function frames the allocation problem in

line with the theoretical literature.

I use Clt to denote a lab l’s choice set on day t. This choice set consists of further trials of older

projects already in the lab’s portfolio and initial trials of new projects. For example, consider a day
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t where the lab has capacity to allocate nlt = 2 new trials. Suppose the lab has had three trials of

project i up to day t− 1; then the fourth and fifth trials of project i are in day t’s choice set. For

another project i′ the lab has received from the NIH and has not tried up to day t−1; the first and

second trials of project i′ are in day t’s choice set.

I use ai jt to denote input allocation decisions. ai jt ∈ {0,1} where 1 represents allocating trial

ji to project i on day t and 0 represents not allocating ji on day t. The vector aaalt has a length equal

to the cardinality of the choice set Clt and represents the action on each of the project-trials in the

choice set.

I use Yi jt to denote the outcome of trial ji on day t. Yi jt = 1 if the trial succeeded and produced

a publication. I use Yi jkt to denote the outcome of stage k of trial ji on day t.

I use Ωt to denote the labs’ information set on day t. Because the labs could observe each

others’ allocations and output at all times, all labs share the same information set on a day. Ωt

includes the actions aaa1,aaa2, ...,aaat−1 and outcomes and stage-specific outcomesYYY 1, ...,YYY t−1 observed

before t from all labs.

I use pi jt to denote the probability of success of trial ji on day t. The labs and the economist

have incomplete information about pi jt . Let the prior distribution of pi jt be Ft(pi jt). The labs

formed and updated posterior F̃t(pi jt |Ωt) with supervised machine learning, and I made best-effort

replication of the labs’ posterior offline in Section 3.3.

I use πi jt(aaalt , pi jt ;θθθ Xl) to denote the payoff (in welfare units) from project-trial ji. It depends

on three variables. πi jt(·) depends on the actions aaalt . Whenever ai jt = 0, πi jt(·) = 0 because a

trial not allocated does not pay off. When ai jt = 1, πi jt(·) also depends on pi jt , the probability of

success of the trial. πi jt(·) also depends on θθθ Xl , which are welfare weights predetermined by the

lab.

πi jt(alt , pi jt ;θθθ Xl) is not the same as output. One can think of it as a utility function that trans-

lates output into welfare according to the welfare weights θθθ Xl . For example, consider a trial ji

that would produce a novel and biomedically important structure upon its success. The structure

is a unit of output. Suppose the lab has a welfare weight of 5 on a novel structure and a welfare

weight of 3 on a biomedically important structure; the welfare the lab receives from this trial upon

its success is 8. The lab knew its welfare weights but the economist does not, so I will estimate

θθθ Xl based on the lab’s observed allocations. I describe the estimation procedure in Section 5.1.
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A lab’s objective is to maximize the posterior expected payoff over the horizon by choosing a

sequence of actions. The objective function is as follows:

max
aaal1(Ω1),...,aaalT (ΩT )

T

∑
t=1

∑
ji∈Clt(Ωt)

∫
πi jt(aaalt , pi jt ;θθθ Xl) dF̃t(pi jt |Ωt),

subject to ∑
ji∈Clt(Ωt)

ai jt = nlt ,

and for all ji < j′i ∈Clt(Ωt), if ai jt = 0 then ai j′t = 0.

(1)

The first constraint is the capacity constraint. The second constraint rules out allocating a fifth trial

to a project when the fourth trial has not been allocated.

4.2 Intractability of Backward Induction

The most standard way of modeling how agents choose actions in a problem like equation (1) is

to assume they specify the value function of different actions as a Bellman equation and solve the

Bellman equation by backward induction. The value function of a state is the value attained by

equation (1) at this state at the sequence of optimal actions aaa∗l1,aaa
∗
l2, ...,aaa

∗
lT . The state variable in

our setting is the information set Ωt .

The Bellman equation has two additively separable components, one component representing

the posterior expected payoff in the current period and the other representing the continuation

value. We can define the action-specific value function Vi jt(Ωt ,aaalt ;θθθ Xl) of project-trial ji on day t

as follows

Vi jt(Ωt ,aaalt ;θθθ Xl) =
∫

πi jt(aaalt , pi jt ;θθθ Xl) dF̃t(pi jt |Ωt)︸ ︷︷ ︸
posterior expected payoff

+EΩ′t+1
[ max

aaal,t+1
Vi, j′,t+1(Ω

′
t+1,aaal,t+1)|Ωt ,aaalt ]︸ ︷︷ ︸

continuation value

.

(2)

The value function Vi jt(Ωt ;θθθ Xl) of project-trial ji on day t is equal to Vi jt(Ωt ,aaalt ;θθθ Xl) evaluated at

the optimal aaa∗l1,aaa
∗
l2, ...,aaa

∗
lT .

As the continuation value integrates over the future evolutions of the state, solving the Bellman

equation with backward induction and obtaining the optimal sequence of actions aaa∗l1,aaa
∗
l2, ...,aaa

∗
lT is

computationally intractable in our setting due to the curse of dimensionality. The state variable
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Ωt consists of all previous actions and outcomes. The number of possible actions on a day are

sometimes on the order of millions. The time horizon has thousands of days. The number of

possible states at the end of the horizon is astronomical.

4.3 Index Approximation

I present an alternative way of modeling how the labs chose actions, that is, assuming they used a

simple index to approximate the value function.

Index approximation overcomes the curse of dimensionality because the approximated contin-

uation value does not integrate over the future evolutions of the state. Let V A
i jt(Ωt ,aaalt ;θθθ l) represent

the lab’s approximation to the action-specific value function in equation (2),

V A
i jt(Ωt ,aaalt ;θθθ l) =

∫
πi jt(aaalt , pi jt ;θθθ Xl) dF̃t(pi jt |Ωt)︸ ︷︷ ︸

as before

+ Bi jt(Ωt ,aaalt ;θθθ Bl)︸ ︷︷ ︸
approximation to continuation value

.
(3)

It has two additively separable components in direct parallel to the Bellman equation. The first

component represents the posterior expected payoff in the current period and is identical to that

in equation (2). The second component is an unknown function that the lab is assumed to use to

approximate the continuation value. The key difference between this component and the contin-

uation value in equation (2) is that the former is not a function of the future state Ω′t+1. The lab

is assumed to use a heuristic Bi jt(·), such as the posterior variance of the payoff, to approximate

the value of continuing exploration of a project, and this heuristic is based only on information

available to the lab at time t. Theoretical literature would call Bi jt(·) the “exploration bonus.”

Because the computation of the approximation term only uses information currently available,

the lab can solve equation (3) directly, without the need to backward induct. Assume the lab chose

actions based on the approximate value function, acting as if the approximate value function was

the true value function, it would simply choose actions aaaA∗
lt on each day t to maximize the sum of
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the approximate values on that day, as follows:

aaaA∗
lt =argmax

aaalt
∑

ji∈Clt(Ωt)

V A
i jt(Ωt ,aaalt ;θθθ l),

subject to ∑
ji∈Clt(Ωt)

ai jt = nlt ,

and for all ji < j′i ∈Clt(Ωt), if ai jt = 0 then ai j′t = 0.

(4)

With some very intuitive functional form assumptions about the payoff function πi jt(·) (see Ap-

pendix C.1 for details), we can make V A
i jt(·) only a function of ai jt , not the full aaalt vector, and make

the second constraint always holds at the solution. With those assumptions, aaaA∗
lt is equivalent to

an index rule: the lab computes index V A
i jt(Ωt ,ai jt = 1;θθθ l) for each project-trial in Clt , and aaaA∗

lt are

just allocating to the nlt trials with the highest index values.

Unlike actions based on backward induction, actions made using the index approximated value

functions are not optimal. Actions made in this way just represent what might produce a reason-

ably good payoff. Extensive literature on dynamic allocation provides theoretical grounding for

approximating the value function using an index in our setting.

Equation (1) is a finite-horizon multi-armed bandit (MAB). Allocation problems characterized

by objective functions like equation (1) are called multi-armed bandits because of a classic exam-

ple of this type of problem. Imagine you are playing a five-armed bandit slot machine and you

have ten opportunities to pull. In what way should you allocate your pulls across arms to maxi-

mize the expected total payoff if you have little prior information about the payoff of each arm?

Intuitively, you want to use a few pulls to sample payoffs from different arms to learn which arms

are promising then use the remaining opportunities to pull those arms. In our setting, each project

is an arm and each trial of a project is a pull of an arm.

Theoretical literature has found optimal or nearly optimal indices for some MABs. In the case

of the standard infinite-horizon discounted MAB,21 the optimal index is the Gittins index (Gittins

& Jones, 1979; Gittins, 1979). In the case of the standard finite-horizon MAB defined by the

21Defined by the objective function

max
aaal1(Ω1),aaal2(Ω2),...

∞

∑
t=1

β
t

∑
ji∈Clt (Ωt )

∫
πi jt(aaalt , pi jt ;θθθ Xl) dF̃(i)(pi jt |Ω(i)

t ),subject to ∑
ji∈Clt (Ωt )

ai jt = 1 for all t. (5)
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objective function

max
aaal1(Ω1),...,aaalT (ΩT )

T

∑
t=1

∑
ji∈Clt(Ωt)

∫
πi jt(aaalt , pi jt ;θθθ Xl) dF̃(i)(pi jt |Ω(i)

t ),

subject to ∑
ji∈Clt(Ωt)

ai jt = 1 for all t,
(6)

Lai & Robbins (1985) and Lai (1987) show that index rules do not provide exact solutions but

are asymptotically optimal as the number of periods T goes to infinity, and have nearly optimal

performance from both the Bayesian and frequentist viewpoints for moderate and small T . These

nearly optimal index rules can be interpreted as the upper confidence bounds (UCB) for the pos-

terior expected payoffs. Their results inspired a literature on indices that approximate the UCB

(Agrawal, 1995; Bubeck & Cesa-Bianchi, 2012; Cappé et al., 2013). The simplest UCB index is

just a function of the number of previous pulls of the arm (Auer et al., 2002).

Equation (1) differs from the standard finite-horizon MAB in a few ways, and, as a result,

theoretical literature has yet to find an optimal index for it, but the literature has also shown indices

may be good heuristics in those cases.

The first difference is that equation (1) does not assume stationarity of payoffs. F̃t(·) in equa-

tion (1) is indexed with the t subscript while F̃(·) in equation (6) is not. As science advances

continuously, the payoff of a trial might evolve over time independent of the states and actions.

For example, a new technology that becomes available on day t could increase the probabilities

of success of all trials in the future. Non-stationary MABs are called “restless bandits” (Whittle,

1988). Theoretical literature has found indices to be suboptimal for restless bandits in the general

case (Ortner et al., 2012; Lattimore & Szepesvári, 2020). However, if one is willing to assume

the nature of change in F̃t(·), such as abrupt changes in unknown periods, Garivier & Moulines

(2011) show that UCB-like indices can match the lower bound on regret up to a logarithmic factor.

Such indices are based on the idea of “forgetting” and would discount information learned in early

periods or use sliding windows to exclude that information.

Another difference is that equation (1) has a much more complex action space. Equation (1)

allows for allocating multiple trials to the same project or to different projects in a period if nlt > 1

and nlt can change from period to period. All allocated trials reveal their payoffs. In contrast,
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equation (6) only allows for allocating one trial to one project in each period. MABs that allow

for pulling multiple arms in each period, where all pulled arms reveal their payoffs, are called

“combinatorial semi-bandits.” Works have shown that indices could work well for stochastic com-

binatorial semi-bandits (Kveton et al., 2015; Chen et al., 2016; Wang & Chen, 2018), albeit under

quite strong assumptions on the action space and/or the functional form of the payoff function. Re-

cent works push towards relaxing those assumptions (Lattimore & Szepesvári, 2020; Chen et al.,

2021).

A further difference is that equation (1) does not assume independence between arms. Equation

(1) integrates the payoff over the posterior distribution F̃t(pi jt |Ωt), which is conditioned on the full

information set at t. In contrast, equation (6) integrates over F̃(i)(pi jt |Ω(i)
t ), where the information

set is specific to each project i and learning about one project from its trial outcomes does not spill

over to another project. Many research projects share similar characteristics, so their payoffs could

be correlated. For example, 24% of projects in my data are membrane proteins, whose trials in

general had low probabilities of success.22 When the agent has this kind of contextual information

to help predict the payoff, the MABs are called “contextual bandits” (Woodroofe, 1979; Langford

& Zhang, 2007). Recent works have shown that UCB-like indices can achieve a nearly optimal

regret guarantee on the order of Õ(
√

T ) (Guan & Jiang, 2199; Zhou et al., 2020). These indices

build models to correlate the contextual characteristics with the observed outcomes and then use

the models to predict the UCB of the payoff of each pull.

Extensive practical applications of index heuristics in bandit-like problems also suggest using

index approximation without tight theoretical justification might not be as alarming as it sounds.

Algorithms based on index heuristics, especially the UCB, nowadays power applications ranging

from product recommendations (Scale (2021)) to dynamic pricing (Yang et al. (2020)) to self-

driving cars (Zhang (2021)). The real-world bandit problems are often too complex and messy to

find an exact theoretical result so the uses of indices are often without tight theoretical justifications.

This does not seem to concern practitioners. The practitioners’ goal is not to find the optimal

decision model, but to find what works reasonably well and better than the alternatives. Given

that the current theoretical literature often fails to find optimal solutions for complex MABs and

22Only 1.2% of trials on membrane proteins succeeded while 1.8% of trials on non-membrane proteins succeeded
in my data.
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needs to rely on index heuristics, it is implausible to think that the labs actually took the optimal

actions. I therefore argue that index approximation is not just for computational convenience.

Index approximation is a plausible empirical model of the labs’ decision-making because the labs

could have applied this simple model in decision-making.

4.4 Models of Index Approximation

The main model modifies the simple, well-used UCB index from Auer et al. (2002). Under Auer

et al. (2002), Bi jt(·) is a convex decreasing function of the amount of input previously allocated to

the project.23 Intuitively, UCB approximates the upper confidence bound of an allocation’s pos-

terior expected payoff. Allocating input to a project that the lab has poor information about has

a high UCB. As the lab allocates more input to the project and has better information about its

productivity, the UCB of further allocations decreases. My modification to Auer et al. (2002) is

an additional term that captures time-discounting of the value of older projects that the lab has at-

tempted in the distant past. This term proxies for the unobserved changes in the value of exploring

a project over time from the lab’s perspective, for example due to project-specific learning staying

with individual researchers and personnel changes in the lab. The main model is as follows.

Main Model (UCB+D). The labs set Bi jt(Ωt ,aaalt ;θθθ Bl) = ai jt [
√

θB1,l
j +θB2,l · (t− t ′i,t)].

24

The free parameter θB1,l captures the amount of exploration. The first few trials of a project have

larger Bi jt(·) compared to later trials of the same project under this model and θB1,l determines

how much larger. If a lab did not explore at all, the first few trials of its projects should not have

larger Bi jt(·) relative to later trials. In that case, θB1,l = 0. The free parameter θB2,l captures the

amount of discounting of older projects. The variable (t− t ′i,t) measures the duration between the

current period t and the period t ′i,t in which the last previous trial on project i happened. A negative

23Under Auer et al. (2002),

Bi jt(·,ai jt = 1) =

{
∞ if j = 1√

2ln(Nlt )
j−1 if j = 2,3,4...

(7)

where Nlt is the total number of pulls the agent has done so far. More recent implementation uses a fixed value θB1
rather than 2ln(Nlt) (Lattimore & Szepesvári, 2020). For my main model, I do not use an infinite value for Bi jt(·)
when j = 1. If I do, V A

i jt would be infinite and cause problems in estimation via maximum likelihood and in identifying
θB1.

24If j = 1, t ′i,t = t.
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coefficient estimate of θB2,l would suggest the lab discounted projects it tried a while ago when it

decided which projects to explore further. If the lab did not discount older projects, θB2,l ≥ 0.

I also define several alternative models for robustness checks. Those models are obvious can-

didates but one can surely add additional models. Theoretical literature and practical applications

have proposed a wide range of other indices for MABs and we can in principle test each one of

them. Ultimately, the models tested should be reasonably close to the allocation model the labs

actually used. My conversations with NIH program officers and a project coordinator at one of the

four largest labs reveal that the trial allocation process was quite heuristic. The labs used a “high-

throughput” approach to trial allocation, where they allocated one initial trial to a lot of projects.

If the projects were important or if the projects showed promise of success in previous trials, then

they allocated more trials to those projects. As such, simple indices could well capture the ac-

tual allocation model. I therefore only chose to test the most parsimonious indices well-studied in

theoretical literature.

The first of those alternative models is the static model. Under this model, the labs set the

exploration bonus Bi jt(·) to zero and completely ignore exploration. This model does not have any

free parameters in Bi jt(·) and is equivalent to restricting θB1,l and θB2,l in the main model to zeros.

Alternative Model 1 (static). The labs set Bi jt(Ωt ,aaalt) = 0.

The second alternative model is the Gittins index, a seminal index in theoretical literature

(Gittins & Jones, 1979; Gittins, 1979). The Gittins index prescribes optimal actions for the standard

infinite-horizon discounted MAB discussed in Section 4.2. Equation (1) was different, so under

this model the labs would be using the Gittins index without its optimality guarantee. Computing

the exact Gittins index is difficult. I therefore use Brezzi & Lai (2002)’s approximation to the index.

This approximation explicitly includes the posterior variance of payoff Var(πi jt(Ωt ,aaalt ;θθθ Xl)) in

Bi jt(·).25 As the first alternative model, this model does not have any free parameters, other than

θθθ Xl , in Bi jt(·).

25

Var(πi jt(Ωt ,aaalt ;θθθ Xl)) =
∫
(πi jt(aaalt , pi jt ;θθθ Xl)−

∫
πi jt(aaalt , pi jt ;θθθ Xl) dF̃t(pi jt |Ωt))

2 dF̃t(pi jt |Ωt). (8)
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Alternative Model 2 (Gittins). The labs set Bi jt(Ωt ,aaalt ;θθθ Xl) = ψ(·) ·
√

Var(πi jt(Ωt ,aaalt ;θθθ Xl)).26

The third alternative model is a simple UCB without discounting that closely resembles Auer

et al. (2002). Compared to alternative models 1 and 2 which have no additional free parameters in

Bi jt(·), this model has one free parameter θB1,l that needs to be estimated. The model is equivalent

to restricting θB2,l of the main model to zero.

Alternative Model 3 (UCB). The labs set Bi jt(Ωt ,aaalt ;θB1,l) = ai jt

√
θB1,l

j .

The fourth alternative model relaxes how posterior variance enters Bi jt(·) compared to the

Gittins index. It also has one free parameter in Bi jt(·).

Alternative Model 4 (FlexGittins). The labs set

Bi jt(Ωt ,aaalt ;θθθ Xl) = θB1,l ·ψ(·) ·
√

Var(πi jt(Ωt ,aaalt ;θθθ Xl)).

The last alternative model adds the term for time-discounting to the FlexGittins model. It has

two free parameters, the same as the main model.

Alternative Model 5 (FlexGittins+D). The labs set

Bi jt(Ωt ,aaalt ;θθθ Xl) = θB1,l ·ψ(·) ·
√

Var(πi jt(Ωt ,aaalt ;θθθ Xl)) +ai jt ·θB2,l · (t− t ′i,t).

5 Model Fitting

I developed a two-step method to estimate and validate the model. In the first step, I estimate the

free parameters in each model by maximizing the likelihood of the observed allocation decisions.

In the second step, I use the estimated parameters to forward simulate the labs’ entire history of

input allocation and output. I compare the patterns of input allocated and output from the simulated

data to those from the actual data to determine model fit.
26The function ψ(·) is defined as

ψ(s) =



√
s/2 if s≤ 0.2

0.49−0.11s−1/2 if 0.2 < s≤ 1

0.63−0.26s−1/2 if 1 < s≤ 5

0.77−0.58s−1/2 if 5 < s≤ 15

{2log(s)− log(log(s))− log(16π)}−1/2 if s > 15,

(9)

where s = Var(pi jt |Ωt )

−ln(β )E(pi jt |Ωt )(1−E(pi jt |Ωt ))
. I set the discount factor β = 0.95.

24



5.1 Estimation

In this first step, I estimate the free parameters θθθ l in each model by maximizing the likelihood

of the observed allocation decisions. Our model assumes that the labs chose actions based on

the approximate value function; therefore the observed actions aaao
l1,aaa

o
l2, ...,aaa

o
lT are the solutions

aaaA∗
l1 ,aaa

A∗
l2 , ...,aaa

A∗
lT to equation (4). We can use the likelihood for the observed allocations P(aaao

lt ;θθθ l)

to estimate θθθ l .

To form P(aaao
lt ;θθθ l), I start by rewriting the allocation problem in equation (4) as follows

aaao
lt =argmax

aaalt
∑

ji∈Clt

V A
i jt(Ωt ,ai jt ;θθθ l)+ εit ,

subject to ∑
ji∈Clt

ai jt = nlt .
(10)

I replaced aaaA∗
lt with aaao

lt in equation (10) to reflect that the observed allocations are the optimal

actions based on the approximate value function. I introduced an additive error term εit . I assume

all ε
iid∼ Type I Extreme Value and capture the unobservables in decision-making. This will help

me to write P(aaao
lt ;θθθ l) as a closed-form function of θθθ l . I also made some very intuitive functional

form assumptions about the payoff function πi jt(·), so that V A
i jt(·) is only a function of ai jt , and

not a function of the full aaalt vector. These assumptions allow me to replace V A
i jt(Ωt ,aaai jt ;θθθ l) with

V A
i jt(Ωt ,ai jt ;θθθ l). The functional form assumptions also guarantee that the second constraint of

equation (4) holds at the solution, allowing me to drop the second constraint for equation (10). See

Appendix C.1 for details of the functional form assumptions and derivations.

The solution aaao
lt to equation (10) is equivalent to the following index rule: one first computes

index V A
i jt(Ωt ,ai jt = 1;θθθ l)+ εit for each project-trial in Clt and then allocates to the nlt trials with

the highest index values.

For computational tractability, I assume the lab made iid decisions whether to allocate each

trial, using a threshold rule. The lab allocated a trial whenever the trial’s index value was greater

than the threshold on that day. Doing so allows me to express the likelihood P(aaao
lt ;θθθ l) with a

simple closed form. Let V nlt
lt (θθθ l) denote the nlt th highest value of V A

i jt(Ωt ,ai jt = 1;θθθ l) on day t.
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Define the threshold value which is equal to V nlt
lt (θθθ l) plus an error term εlt :27

thresholdlt =V nlt
lt (θθθ l)+ εlt . (11)

The likelihood of observing ao
i jt = 1 is equal to the likelihood of V A

i jt(Ωt ,ai jt = 1;θθθ l)+ εit being

greater than this threshold, so the likelihood P(ao
i jt = 1;θθθ l) is

P(ao
i jt = 1;θθθ l) = P(V A

i jt(Ωt ,ai jt = 1;θθθ l)+ εit >V nlt
lt (θθθ l)+ εlt)

=
exp(V A

i jt(Ωt ,ai jt = 1;θθθ l))

exp(V A
i jt(Ωt ,ai jt = 1;θθθ l))+ exp(V nlt

lt (θθθ l))
.

(12)

The total likelihood function sums over the log likelihood of the observed action for each

project-trial in choice sets Cl1,Cl2, ...,ClT . These likelihoods include P(ao
i jt = 1;θθθ l) for trials actu-

ally allocated and 1−P(ao
i jt = 1;θθθ l) for trials in those choice sets but which were not allocated:

θθθ
∗
l = argmax

θθθ l

T

∑
t

(
∑

ji∈Clt , ao
i jt=1

log(P(ao
i jt = 1;θθθ l))︸ ︷︷ ︸

actual allocations

+ ∑
ji∈Clt , ao

i jt=0
log(1−P(ao

i jt = 1;θθθ l))︸ ︷︷ ︸
actual nonallocations

)
. (13)

One can then estimate θθθ l by maximizing the above likelihood function. Due to the simplicity

of computing index approximations, estimation is feasible even though the choice sets contain

millions of possible actions over thousands of days. A further trick to reduce computational burden

is to compute in each iteration the log likelihoods for a random sample of the possible allocations

in the choice sets, rather than for the full choice sets. The number of possible allocations in a full

choice set could be large because nlt could be large. Recall that the mean of nlt for the four largest

labs is 35. When nlt = 35, the ( j+1)th, ( j+2)th,..., ( j+35)th trials of every project in the lab’s

portfolio are in the full choice set. See Appendix C.2 for how I sample from the choice sets.

The estimated θ̂θθ l includes two kinds of parameters. θ̂θθ Bl are the free parameters in the explo-

ration bonus term Bi jt(·), if there are any. θ̂θθ Xl are welfare weights that enter into the payoff function

πi jt(Ωt ,aaalt ;θθθ Xl). I let θθθ Xl have eight parameters. Seven of these parameters correspond to the NIH

27Note that this value is not necessarily the nlt th highest index value on day t due to the iid error terms. In principle,
one can obtain the nlt th highest index value on day t with simulation draws of ε’s and use that as the threshold. Doing
so would be computationally more challenging than my approach.
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evaluation metrics discussed in Section 3.1. For example, θbiomedl,l corresponds to biomedi and

captures the amount of welfare lab l receives when it publishes a biomedically important structure.

One additional parameter θquant,l captures the baseline amount of welfare lab l receives per unique

structure. See Appendix C.1 for the specification of the payoff function πi jt(Ωt ,aaalt ;θθθ Xl).

Identification of model parameters is based on revealed preferences and is very intuitive. Let

us consider θbiomed,l. When we have a large positive θbiomed,l, it would increase the posterior

expected payoff of biomedically important projects and increase V A
i jt of those projects relative to

V nlt
lt , which is based on the distribution of V A

i jt of all project-trials in the lab’s choice sets. In contrast,

a large positive θbiomed,l would decrease V A
i jt for non-biomedically important projects relative to

V nlt
lt . A large positive θbiomed,l therefore increases the likelihood of allocating to biomedically

important projects and the likelihood of not allocating to non-biomedically important projects.

Correspondingly, if the lab actually allocated a high proportion of trials to biomedically important

projects, such a data pattern will lead to a large positive estimate of θ̂biomed,l. Variation in the binary

variable biomedi in the choice sets therefore identifies θbiomed,l. Identification of other parameters

follows the same intuition.

5.2 Simulation

In this second step, I use the estimated parameters of each model to forward simulate the labs’

entire history of input allocation and output. Doing so would allow me to compare the patterns

of input allocated and the output from the simulated data to that from the actual data to determine

model fit.

I initialize each simulation with the following conditions.

• Data generating process (DGP)

We need to have a model of the “true” probability of success of a trial to simulate the out-

comes of counterfactually allocated trials. I denote this model by F∗. This model is different

from the posterior F̃t in Section 3.3. F̃t captures how the labs formed posterior beliefs. It

does not have to produce an unbiased estimate of the true probability of success of a trial,

while F∗ has to. As such, F∗ deviates from F̃t in several ways to correct the potential bias of

and improve upon the machine learning models the labs described in their published journal
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articles. See Appendix B.1 for these implementation details. F∗ is trained on ΩT+1, the full

information set consisting of all trial outcomes and characteristics in the entire data.

• Project space

F∗ may do a poor job imputing the probabilities of success of trials on projects the labs never

attempted and are far out in the project space, so I restrict the project space to the projects

the labs actually attempted. Applying this restriction still leaves the labs ample room to

explore and/or exploit projects as only a tiny fraction of projects ever attempted successfully

produced publications.

• Allocation model

This sets the allocation model and its corresponding parameters θθθ ′Xl and θθθ ′Bl during the

simulation. To validate a model, θθθ ′Xl and θθθ ′Bl are equal to the estimated parameters θ̂θθ Xl and

θ̂θθ Bl under the model.

• Prior allocations and output

Allocations and outcomes before 2005 are used as prior data and not simulated.

I then do the following to forward simulate the labs’ entire history of input allocation and output

since 2005.
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Algorithm 1: Forward simulation of trial allocations and outcomes

For day t in 2005–2015,

• Update posterior beliefs Counterfactual information set Ω′t consists of the actual and

simulated actions and outcomes observed before t. Refit model of the lab’s poste-

rior belief F̃ ′t (Ω
′
t).

•Make allocations Form choice set C′lt . Compute V̂ A
′
i jt of each choice in the choice

set based on F̃ ′t (p′i jt |Ω′t), θθθ ′Xl and θθθ ′Bl . Draw iid ε ′it from a Type-I Extreme Value

distribution. Allocate to nlt trials with the largest V̂ A
′
i jt + ε ′it values.

• Simulate outcomes Generate the true trial success probability p∗i jt |F∗(ΩT+1) for the

allocated trials. Draw outcomes Y ′i jt ∼ Bernoulli(p̂∗i jt) for these trials.

• Update information set Add to the information set actions and outcomes observed in

this period. Go to the next period.

End

6 Model Fitting Results

I find the main model fits the data extremely well and captures the labs’ decision-making. During

the maximum likelihood step, the main model by far has the smallest magnitude of log likelihood

at convergence among the many alternative models I tested. It fits the data better with no or few

additional parameters as compared to the alternatives. During the simulation step, the main model

generates input allocation patterns and output that are very similar to those in the data. For all

labs, the deviations of the simulated output from the actual output are within 10%. The alternative

models fail to generate patterns matching the data as closely.

Based on the estimated parameters of this well-fitting model, I am able to reject the hypothesis

that the labs did no explore at 95% confidence for all labs.
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6.1 Estimation Results

Table 2 shows that the main model fits the data much better with no or few additional parameters

than the alternatives through a comparison of log likelihoods. With the same number of parame-

ters, the main model UCB+D has a magnitude of log likelihood that is only half the size of that of

the FlexGittins+D model. In fact, the fit of the simple UCB model without discounting is already

remarkable. With fewer parameters, the simple UCB model has a magnitude of log likelihood

that is similar to that of the FlexGittins+D model. This table shows results for one large lab. Ap-

pendix Tables D1–D3 show results for the other large labs which are qualitatively similar. Among

those labs, the main model has a magnitude of log likelihood that is 28% to 41% smaller than the

FlexGittins+D model.

Table 2 also shows that the main model fits better through a comparison of the predicted likeli-

hoods of the observed allocation decisions. It shows that, among the project-trials the lab actually

allocated to, the main model on average predicts a 83.7% likelihood of allocating to each project-

trial. Among the project-trials the lab did not actually allocate to, the main model on average

predicts a 99.9% likelihood of not allocating to each project-trial. These predicted likelihoods are

by far the highest among the models fitted. Appendix Tables D1–D3 show results for the other

large labs which are qualitatively similar.

As a further robustness check, I examine the out-of-sample fit of the main model. To do so,

I first fit the main model using only observed allocation decisions in odd years. I then use the

estimated parameters to compute the average predicted likelihoods and log likelihoods in-sample

and out-of-sample. I compute the in-sample results using decisions in odd years which I used to fit

the model. I compute the out-of-sample results using decisions in even years. Appendix Table D4

shows a comparison of the in-sample and out-of-sample results and suggests that the out-of-sample

fit of the main model is quite similar to the in-sample fit for all labs.

Table 3 shows estimates of main parameters of interest in the main model. As these parameters

reflect the lab’s preferences, the estimates are not in dollar values and are therefore hard to interpret

on their own. Still, one can make interpretations by comparing the estimates with zero or with each

other in different periods. The table shows results for one large lab. Appendix Table D6 shows

results for the other large labs which are qualitatively similar.
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Estimates in Table 3 reject the hypothesis that the lab did not explore. Recall that θB1 captures

the amount of exploration under the main model. If the lab did not explore, θB1 = 0. Estimates of

θB1 in Table 3 are large and significantly different from zero at 95% confidence level, allowing us

to reject the hypothesis that the lab did not explore. For all other large labs, we can similarly reject

no exploration at 95% confidence.

Estimates in Table 3 also show that the lab discounted older projects in making allocations.

Discounting of older projects proxies for many unobserved factors in the allocation process. For

example, if there were personnel changes in the lab over time and there were project-specific

learning that stayed with individual researchers that frequently left, the lab would be less inclined

to attempt projects that it had attempted in the distant past. Recall that a negative θB2 captures

discounting under the main model. If the lab did not discount older projects, θB2 ≥ 0. Estimates of

θB2 are negative and significantly different from zero at 95%, allowing us to reject no discounting.

For all other large labs, we can similarly reject no discounting at 95% confidence.

As another robustness check, I compare the estimates for θbiomed during 2005–2008 and during

2009–2015. Recall that the NIH boosted its preference for biomedically important projects in

2009. As expected, the estimate during 2009–2015 is significantly larger than the estimate during

2005–2008 as their 95% confidence intervals do not overlap. This relationship holds for estimates

from all other large labs.

We have shown the main model fits better than many alternatives. However, it is difficult

to jump to the conclusion that the model correctly captures the actual allocation decisions. To

investigate whether this model could generate patterns similar to those in the actual data, I use

simulations.

6.2 Simulation Results

Table 4 shows simulated outcomes using estimated model parameters for one large lab. Results for

other labs are in Appendix Table D7 and are qualitatively similar.

The first column of Table 4 shows that the simulated number of projects attempted under the

main model matches the actual number. The other models, in contrast, fall short by various degrees.

Consistent with our intuition, the lab does not explore under the static model so the number of
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projects attempted is small at 14,175. The models based on the Gittins index encourage exploration

by adding a positive exploration bonus so the numbers of projects attempted are slightly larger. The

two UCB models explore extensively and the numbers of projects attempted under the two models

are much closer to the actual. Figure 8 shows a further breakdown of the simulated input allocation

across projects, plotting the distribution of the number of trials per attempted project under each

model. One immediately sees that the simulated distribution of the main model fits the actual

distribution the best.

The second column of Table 4 shows that the simulated number of unique publications under

the main model matches the actual number. Figure 9 shows a further breakdown, plotting the

simulated number of publications by year under each model.28 The first panel of Figure 9 shows

that output quantity under the static model peaks in 2006, the year immediately after the start of

the simulation, then gradually declines. This is consistent with static maximization that the lab

immediately allocates input to projects that it believes to be the most likely to pay off. In later

years the lab exhausts such projects as it does not explore many new projects. The models based

on the Gittins index produce slightly more output than the static model, but the output patterns

are qualitatively similar. The two UCB models in contrast maintain steady output over the years

because extensive exploration of new projects under the two models replenishes the lab’s portfolio.

The two models generate output patterns that are very similar to the actual output patterns.

The third and fourth columns of Table 4 show that the simulated numbers of citations and

downloads under the main model match the actual numbers. These results suggest that the kinds

of projects the lab allocates input to under the model are similar to the kinds of projects the lab

actually allocated input to. To investigate further, Figure 10 compares the characteristics of trials

actually allocated with those of trials allocated in simulations. The first panel displays the propor-

tions of trials on projects that the lab cited as biomedically important. The main model produces

allocation patterns very similar to the actual allocation patterns. Starting in 2009, the lab drasti-

cally shifted towards attempting more biomedically important projects, consistent with the change

in NIH preferences in that year. The model captures this drastic shift almost perfectly, indicating

that the lab changed the mix of project characteristics in its portfolio mostly through introducing

28The actual series has a hump shape. Before 2009, the lab slowly built up capacity. In 2009, the lab became aware
that the grant program would end in 2015 and started to slowly dismantle capacity.
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new projects with the desired characteristics. In contrast, the increase is small for the static model

around 2009 as the lab would rarely draw new projects under this model and only would change

the mix of project characteristics by reallocating input within its existing portfolio. The second

panel and the third panel show two more project characteristics that the NIH evaluated the lab’s

progress on. The fourth panel shows one project characteristic that the NIH did not evaluate on.

Very similar to the first panel, these panels show that the main model produces allocation patterns

very similar to the actual allocation patterns.

Results from other labs in Appendix Table D7 are very similar to those in Table 4. For all

four large labs, the deviations of the simulated outcomes under the main model from the actual

outcomes are within 10%.

As a further robustness check, I examine the out-of-sample simulation results of the main

model. To do so, I first fit the main model using only observed allocation decisions in odd years.

I then use the estimated parameters to simulate the lab’s entire input allocation history and output,

in both odd and even years. As I do not use the observed decisions in even years to fit the model

for this exercise, I deem these simulated results out-of-sample. Appendix Table D8 shows a com-

parison of the in-sample and out-of-sample simulation results and suggests that the out-of-sample

results are quite similar to the in-sample results for all labs.

I therefore claim with reasonable confidence that the main model captures the labs’ actual

allocation decision-making. Although we can never prove a model to be true because the scientific

method only allows us to falsify untrue ones, we cannot reject the main model based on simulation

results. Simulation results have shown that the main model could produce allocation patterns and

outcomes that align well with the actual allocation patterns and outcomes.

7 Counterfactual—The Impact of Exploration on Productivity

With a well-fitting model of how the labs made the exploitation-exploration tradeoff, I study the

effect of exploration on the labs’ productivity through counterfactual simulations. Doing so in-

volves simulating a counterfactual where the labs do not explore and comparing the outcomes with

the baseline outcomes from the main model.

The simulation procedure for this counterfactual is largely identical to that for model valida-
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tion in Section 5.2, with only differences in setting θθθ ′Xl and θθθ ′Bl . To simulate this counterfactual,

I set the welfare weights θθθ ′Xl to θ̂θθ Xl,UCB+D, the ones recovered from estimating the main model.

Intuitively, doing so maintains the labs’ estimated preferences for project characteristics and stud-

ies how changing only the labs’ model of exploration impacts the output. I set θθθ ′Bl to zeros to

mimic no exploration. Intuitively, setting θθθ ′Bl to zeros makes the exploration bonus term Bi jt(·)

zero for all trials in the labs’ choice sets. The labs thus make allocations as if they follow the

static model of decision-making—allocating only trials that they believe would have the highest

posterior expected payoff.

Table 5 displays the counterfactual results for one large lab. Appendix Table D9 shows results

for other labs. Those results are qualitatively similar.

Based on results in the above tables, I find exploration was extensive and had a large impact

on the labs’ productivity. For the lab displayed in Table 5, no exploration would result in the lab

attempting 79% fewer projects, producing 64% fewer unique publications and 65% fewer citations.

Summing up results from all four large labs, no exploration would result in the labs attempting 82%

fewer projects, producing 51% fewer unique publications and 57% fewer citations.

Applying back-of-the-envelope calculations with some simple assumptions, no exploration

would result in a loss of at least $650 to $720 million of economic value. Suppose that the other

smaller labs under the $1.3 billion NIH program would have the same percentage decrease in out-

put quantity had they not explored, and that the economic value of each unit of output is uniform;

in that case the 51% decrease in output quantity would be equivalent to forgoing at least $650

million of economic value, if the NIH had a nonnegative economic return to the program. Suppose

instead that the other smaller labs would have the same percentage decrease in citations had they

not explored, and that the economic value of each citation is uniform; in that case the 57% decrease

in citations would be equivalent to forgoing at least $720 million of economic value.

Figure 11 plots the simulated number of unique publications per year for one large lab under

no exploration, compared to that under the original UCB+D model. The figure offers further

evidence of how exploration boosted the labs’ productivity. As the figure shows, output under no

exploration is as high as that under the UCB+D model in 2005, the initial year simulated. In the

following years, however, output under no exploration declines steadily as compared to that under

the UCB+D model. Exploration enables the lab to find low-hanging fruits, which are in parts of
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the project space that the lab is not aware of at the beginning of 2005. In contrast, purely exploiting

projects that the lab believes to be the most productive misses those low-hanging fruit. Over the

years, no exploration results in substantial misallocation of resources to less productive projects.

8 Conclusion

Extensive theoretical literature has recognized the importance of making the exploitation-exploration

tradeoff in resource allocation for innovation, yet little research has studied empirically how inno-

vators make this tradeoff. This paper overcomes the empirical challenges with novel data and a

new estimation method, and it studies how a group of large scientific labs made the exploitation-

exploration tradeoff.

I find that a simple model captures the labs’ decision-making extremely well. This model

embodies extensive exploration and strongly resembles the simple UCB index of Auer et al. (2002).

The only modification is that I added an additional variable to capture time-discounting of older

projects. During the maximum likelihood step, I find this model fits the data the best with no or

few additional parameters compared to the many alternative models I tested. During the simulation

step, I find this model generates input allocation patterns and output that are very similar to those

in the actual data. For all labs, the deviations of the simulated output from the actual output are

within 10%.

Based on this well-fitting model, I find that the labs explored extensively. For all labs, I am

able to reject no exploration at 95% confidence based on estimates of the model’s free parameters.

Counterfactual simulations show that exploration was extensive and that it had a large impact on

the labs’ productivity. Had the labs not explored, their output quantity would have decreased by

51%, and their citations would have decreased by 57%. The decrease is equivalent to a loss of least

$650 to $720 million of economic value.

These results are valuable for several reasons. First, they confirm intuition from the theoreti-

cal literature about the value of exploration for resource allocation under incomplete information.

Moreover, they suggest sophistication in real-world decision-making. The labs were forward-

looking and took into account the dynamic incentives to explore and acquire information, rather

than being myopic and only performing static maximization. These results corroborate conven-
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tional wisdom related to resource allocation for innovation. For example, funding agencies often

designate small early career grants to many young researchers who have scant track records. As re-

searchers mature, track records play a more significant role in follow-on funding. Moreover, these

answers have policy implications for the multi-billion-dollar innovation industry. If these results

extend to the whole industry by any degree, exploration has a nontrivial contribution to innovation

productivity through the channel of improving the resource allocation process. This research offers

a new lens to look at the value of exploration of ideas.

This paper also opens up many possibilities for future research, one of them being further

studies of how resource allocation policies could improve innovation productivity. Many open

questions remain. For example, which policy features of funding programs make it easier for

innovators to choose good allocation models? Besides the allocation model, does the design of

the allocation process, such as the duration and scale, affect productivity? The answers to these

questions can inform future policies. For example, when a funding agency designs early career

grants, the level and duration of such grants are important considerations.

Another possibility is to apply the method developed in this paper to many other economic

problems that embody the exploitation-exploration tradeoff. In principle, whenever economic

agents need to make that tradeoff in dynamic resource allocation, we can use the index approx-

imation approach to model their decisions. The approach overcomes the computational challenges

in the workhorse estimation methods due to the curse of dimensionality. It allows one to recover

an empirical model of decision-making in a problem with thousands of periods and millions of

choices. The potential areas of application are numerous, e.g., the study of purchase decisions of

experience goods, targeted marketing and product recommendations, investment decisions in new

markets, and so on.
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Garivier, Aurélien and Eric Moulines (2011) “On Upper-Confidence Bound Policies for Switching
Bandit Problems,” in International Conference on Algorithmic Learning Theory, 174–188.

Gittins, John C (1979) “Bandit Processes and Dynamic Allocation Indices,” Journal of the Royal
Statistical Society: Series B (Methodological), 41 (2), 148–164.

Gittins, John C and David M Jones (1979) “A Dynamic Allocation Index for the Discounted Mul-
tiarmed Bandit Problem,” Biometrika, 66 (3), 561–565.

Guan, Melody and Heinrich Jiang, “Nonparametric Stochastic Contextual Bandits,” in Proceedings
of the AAAI Conference on Artificial Intelligence, 32 (1).

Guan, R., E. Marcos, P. O’Connell et al. (2014) “Crystal Structure of an engineered protein with
denovo beta sheet design, Northeast Structural Genomics Consortium (NESG) Target OR486,”
https://www.rcsb.org/structure/4R80.

Henderson, Rebecca and Iain Cockburn (1996) “Scale, Scope, and Spillovers: The Determinants
of Research Productivity in Drug Discovery,” RAND Journal of Economics, 27 (1), 32–59.

Hill, Ryan and Carolyn Stein (2020) “Scooped! Estimating Rewards for Priority in Science,”
Working Paper.

(2021) “Race to the Bottom: Competition and Quality in Science,” Working Paper.

Hoelzemann, Johannes, Gustavo Manso, Abhishek Nagaraj, and Matteo Tranchero (2022) “The
Streetlight Effect in Data-Driven Innovation,” Working Paper.

Hotz, V Joseph and Robert A Miller (1993) “Conditional Choice Probabilities and the Estimation
of Dynamic Models,” The Review of Economic Studies, 60 (3), 497–529.

Huang, Hongzhan, Peter B McGarvey, Baris E Suzek, Raja Mazumder, Jian Zhang, Yongxing
Chen, and Cathy H Wu (2011) “A Comprehensive Protein-Centric ID Mapping Service for
Molecular Data Integration,” Bioinformatics, 27 (8), 1190–1191.

Jaffe, Adam B (2002) “Building Programme Evaluation into the Design of Public Research-
Support Programmes,” Oxford Review of Economic Policy, 18 (1), 22–34.

Jahandideh, Samad, Lukasz Jaroszewski, and Adam Godzik (2014) “Improving the Chances of
Successful Protein Structure Determination with a Random Forest Classifier,” Acta Crystallo-
graphica Section D: Biological Crystallography, 70 (3), 627–635.

Jaroszewski, Lukasz, Lukasz Slabinski, John Wooley, Ashley M Deacon, Scott A Lesley, Ian A
Wilson, and Adam Godzik (2008) “Genome Pool Strategy for Structural Coverage of Protein
Families,” Structure, 16 (11), 1659–1667.

Katehakis, Michael N and Herbert Robbins (1995) “Sequential Choice from Several Populations.,”
Proceedings of the National Academy of Sciences, 92 (19), 8584–8585.

39



Kawashima, Shuichi, Piotr Pokarowski, Maria Pokarowska, Andrzej Kolinski, Toshiaki Katayama,
and Minoru Kanehisa (2007) “AAindex: Amino Acid Index Database, Progress Report 2008,”
Nucleic Acids Research, 36 (suppl 1), D202–D205.

Keller, Godfrey, Sven Rady, and Martin Cripps (2005) “Strategic Experimentation with Exponen-
tial Bandits,” Econometrica, 73 (1), 39–68.

Khmelnitskaya, Ekaterina (2022) “Competition and Attrition in Drug Development,” Working Pa-
per.

Klausen, Michael Schantz, Martin Closter Jespersen, Henrik Nielsen et al. (2019) “NetSurfP-2.0:
Improved Prediction of Protein Structural Features by Integrated Deep Learning,” Proteins:
Structure, Function, and Bioinformatics, 87 (6), 520–527.

Krieger, Joshua L (2021) “Trials and Terminations: Learning from Competitors’ R&D Failures,”
Management Science, 67 (9), 5525–5548.

Kveton, Branislav, Zheng Wen, Azin Ashkan, and Csaba Szepesvari (2015) “Tight Regret Bounds
for Stochastic Combinatorial Semi-Bandits,” in Artificial Intelligence and Statistics, 535–543,
Proceedings of Machine Learning Research.

Lai, Tze Leung (1987) “Adaptive Treatment Allocation and the Multi-Armed Bandit Problem,”
Annals of Statistics, 15 (1), 1091–1114.

Lai, Tze Leung and Herbert Robbins (1985) “Asymptotically Efficient Adaptive Allocation Rules,”
Advances in Applied Mathematics, 6 (1), 4–22.

Lane, J.N., C. Ayoubi, K. Boudreau, E. Guinan, and Lakhani K. (2022) “Generating Innovation in
the Lab: Experimental Evidence from the Life Sciences,” Working Paper.

Lane, Julia I, Jason Owen-Smith, Rebecca F Rosen, and Bruce A Weinberg (2015) “New Linked
Data on Research Investments: Scientific Workforce, Productivity, and Public Value,” Research
Policy, 44 (9), 1659–1671.

Langford, John and Tong Zhang (2007) “The Epoch-Greedy Algorithm for Contextual Multi-
Armed Bandits,” Advances in Neural Information Processing Systems, 20 (1), 96–1.
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Figures and Tables

Figure 1: Three-dimensional structure of a protein molecule

Note: The Northeast Structural Genomics Consortium (NESG), one of the large labs in my data,
published this structure in 2014 (Guan et al., 2014).
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Figure 2: Lab makes decisions about allocating resources across projects in each period

Image credits: The images of PCR tubes are from labicons.net.

Figure 3: Collection and analysis of information guide allocation decisions

45



Figure 4: Distribution of input allocation across projects
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Note: This figure includes all 335,553 projects ever attempted in my data.

Figure 5: Funding of the four largest labs
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Note: Each series represents one lab.
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Figure 6: Observed output of the four largest labs

(a) Number of publications
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(b) Citations and mentions
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Note: Each series represents one lab. Panel 6a shows the number of published structures on unique
molecules in a given year divided by the lab’s funding in millions in that year. Panel 6b shows the
number of five-year citations and mentions the published structures in that year generated, divided
by the lab’s funding in millions in that year.
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Figure 7: Estimated posterior beliefs about output

(a) ÊF̃t
(pi jt) (b)

√
V̂arF̃t
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(c) Ê(citationi) (d) Ê(downloadi)

Note: Each panel shows two distributions. The outlined bars show the distribution of the variable
for trials actually allocated at the four largest labs. The size of this data is 714,736. The grey
unoutlined bars show the distribution of the variable for a random sample of all possible trials in
those labs’ choice sets. The size of this data is 105,533,539. See Appendix C.2 about sampling
from choice sets. Panel 7a shows the distributions of the posterior expected probability of success
of a trial. Panel 7b shows the posterior standard deviation of the probability of success of a trial.
Panel 7c shows the expected five-year citations and mentions of a trial upon publication. Panel 7d
shows the expected five-year downloads (in thousands) of a trial upon publication. An observation
from a lab is inversely weighted by the total number of observations from this lab so each lab
contributes equally to the aggregate distribution. The number of bins is coarse and equal to 25 to
avoid depicting very tall bars near zero. The distributions are truncated to their respective ranges
of x-axis values.
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Figure 8: Simulated distributions of input allocation across projects

(a) Static (b) Gittins

(c) UCB (d) FlexGittins

(e) FlexGittins+D (f) UCB+D

Note: Each panel shows two distributions. The outlined bars show the actual distribution of the
number of trials across projects at NESG. The pink unoutlined bars show the simulated distribution
under the model. Each distribution is based on a single simulation of the corresponding model.
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Figure 9: Simulated number of unique publications under different models
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Note: Black dots represent actual numbers of publications on unique molecules at NESG. Red
triangles represent simulated numbers of publications on unique molecules. Each series is based
on a single simulation of the corresponding model.
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Figure 10: Characteristics of trials allocated in simulations, static model versus UCB+D model
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(d) Average sequence length
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Note: Black dots represent characteristics of actually allocated trials at NESG. Blue crosses repre-
sent those of trials allocated under the static model. Red triangles represent those of trials allocated
under the UCB+D model. Each series is based on a single simulation of the corresponding model.
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Figure 11: Simulated number of unique publications, no exploration
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Note: Each series is based on a single simulation of the corresponding model for NESG. Black
dots represent simulated output under the original UCB+D model. For this simulation, one sets
welfare weights θθθ ′Xl to the estimated welfare weights θ̂θθ Xl,UCB+D under the UCB+D model, and
θθθ ′Bl to θ̂θθ Bl,UCB+D. This series is identical to the series represented by red triangles in Figure 9f.
Red triangles represent simulated output under no exploration. For this simulation, one also sets
welfare weights θθθ ′Xl to the estimated welfare weights θ̂θθ Xl,UCB+D under the UCB+D model, but sets
θθθ ′Bl to zeros.
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Table 1: Key variables and data sources

Variable Variable Description Source

Input allocation

i Unique identifier of a project or molecule Berman et al. (2017)

ji Unique identifier of the jth trial of project i Berman et al. (2017)

nlt Number of trials to allocate at lab l on day t Berman et al. (2017)

noveli Binary = 1 if project i was novel Berman et al. (2017)

prevStructiy Number of published structures in the same protein family
as i by year y

EMBL-EBI (2021)

biomedi Binary = 1 if project i was biomedically important Berman et al. (2017)

prevPubiy Number of publications (not limited to structures) on
molecule i by year y

UniProt Consortium (2021)

humani Max percentage identity of i to any human molecule UniProt Consortium (2021)

eukaryotei Max percentage identity of i to any eukaryotic molecule UniProt Consortium (2021)

membranei Binary = 1 if molecule i is a membrane protein UniProt Consortium (2021)

f undingly Funding in dollars lab l received in year y NIH (2019), NIH (2021)

Observed output

Yi jt Binary = 1 if trial ji on day t succeeded Berman et al. (2017)

Yi jkt Binary = 1 if stage k of trial ji on day t succeeded Berman et al. (2017)

citationiy five-year citations and mentions of project i published in
year y

Varadi et al. (2020)

downloadim Number of downloads of project i in month m (between
Aug 2007 and Nov 2013)

wwPDB (2013)

Posterior beliefs about output

ÊF̃t
(pi jt) Best-effort replication of the labs’ posterior expectation of

the probability of success of trial ji on day t
Appendix B.1

V̂arF̃t
(pi jt) Posterior variance of the probability of success of trial ji

on day t
Appendix B.1

Ê(citationiy) Expectation of five-year citations and mentions of project
i published in year y

Appendix B.2

Ê(downloadiy) Expectation of five-year downloads of project i published
in year y

Appendix B.3

Note: This table only summarizes key variables and data sources. For a full description of all data
sources and variables, please see Appendix A.
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Table 2: Comparison of likelihoods of different models

Free parameters Avg P̂(ao
i jt = 1;θθθ l) Avg P̂(ao

i jt = 0;θθθ l)

Model in Bi jt(·) Log likelihood actual allocation actual nonallocation

Static 0 -613,630 0.578 0.993

Gittins 0 -430,746 0.608 0.996

UCB 1 -204,228 0.763 0.998

FlexGittins 1 -412,112 0.614 0.996

FlexGittins+D 2 -230,048 0.710 0.998

UCB+D 2 -119,861 0.837 0.999

Note: I separately estimate each model during 2005–2008 and during 2009–2015 due to the change
in the NIH’s preferences in 2009. Estimates are in Appendix Table D5. The total log likelihood
of each model adds up the log likelihoods from the two periods. Average P̂(ao

i jt = 1;θθθ l) for actual
allocation sums over the predicted likelihoods of all actually allocated trials in the two periods and
divides the sum by the number of actually allocated trials. Average P̂(ao

i jt = 0;θθθ l) for actual non-
allocation sums over the predicted likelihoods of all actually not allocated trials in the choice sets
and divides the sum by the number of actually not allocated trials. Estimation uses data between
2005 and 2015 from NESG, one of the four large labs. The number of trials actually allocated was
109,738. I reduced the sizes of the choice sets with random sampling (see Appendix C.2). The
number of trials in the choice sets after random sampling is 32,410,947. Estimation results from
the three other large labs are qualitatively similar (see Appendix Tables D1–D3).
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Table 3: Estimates of main parameters of interest in UCB+D model

2005–2008 2009–2015
Parameter (1) (2)

θB1 158.28 119.52
[156.35, 160.13] [118.15, 121.41]

θB2 -2.28 -4.71
[-2.23, -2.30] [-4.66, -4.73]

θbiomed 21.50 52.86
[21.32, 21.72] [52.69, 52.93]

Note: Table displays the estimates of the main parameters of interest in the UCB+D model for
NESG, one of the four large labs. See Appendix Table D5 for the full estimates in different mod-
els for the lab. See Appendix Table D6 for the estimates of the main parameters of interest in
the UCB+D model for other labs. The column with the header “2005–2008” uses data between
2005 and 2008. The number of trials actually allocated was 59,261. After random sampling
(see Appendix C.2), the number of trials in the choice sets is 5,628,158. The columns with the
header “2009–2015” uses data between 2009 and 2015. The number of trials actually allocated
was 50,477. After random sampling, the number of trials in the choice sets is 26,782,789. 95%
confidence intervals are computed using the MCMC approach in Chernozhukov & Hong (2003)
and are shown in brackets. These confidence intervals are almost identical to those computed using
Procedure 1 of Chen et al. (2018).
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Table 4: Comparison of simulated outcomes of different models

Model Projects attempted Unique publications Citations Downloads (millions)

Static 14,175 597 1,787 14.1

Gittins 14,980 631 1,898 14.9

UCB 59,164 1,052 3,236 24.5

FlexGittins 15,005 621 1,830 14.6

FlexGittins+D 17,382 638 1,892 15.0

UCB+D 59,947 1,097 3,376 25.6

Actual 59,953 1,053 3,502 24.5†

Note: Each simulation uses θ̂θθ l from parameter estimates of the corresponding model. See Table D5
for those estimates. Results are averaged from three simulations of each model. Actual outcomes
are shown in the last row. Simulation results are for NESG, one of the four large labs. Simu-
lation results from the three other large labs are qualitatively similar (see Appendix Tables D7).
†The download data on actually published projects are between 2007 and 2013, so actual five-year
downloads may not be available for some projects. I predict five-year downloads for the actually
published projects using the model described in Appendix B.3.
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Table 5: Counterfactual outcomes, no exploration

Counterfactual model Projects attempted Unique publications Citations Downloads (millions)

Static 12,421 394 1,179 9.2

(−79%) (−64%) (−65%) (−64%)

Baseline model 59,947 1,097 3,376 25.6

Note: Each simulation uses θ̂θθ Xl from parameter estimates of the UCB+D model in columns (1)
and (2) of Table D5. Results are averaged from three simulations of the model. Output from the
baseline model are identical to those in the second last row of Table 4. Parentheses show percentage
differences as compared to the baseline model. Table shows results from NESG, one of the four
large labs. See Appendix Table D9 for results from other labs.
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