
Exploit or Explore?
An Empirical Study of Resource Allocation in Scientific Labs

Appendices

A Data and Variable Construction

A.1 Project Rationale
I construct two binary variables, noveli and biomedicali, based on textual descriptions in the Tar-
getTrack information system. This section describes the variable construction process.

First, I use keywords to identify projects that were novel and/or biomedically important. Tar-
getTrack contains a variable called targetCategoryList where labs give projects categorical la-
bels such as “biomedical,” “structural coverage,”29 and so on. It also contains a text field called
targetRationale where labs give textual descriptions of projects’ rationales. Whenever targetCategoryList
and targetRationale contain the following keywords, I set noveli equal to 1:

big,30 coverage of protein universe, diversity, first structure of class, low sequence identity,
mega,31 metagenomic, new fold, no structural information, no structure, numer of homologs,32

pfam, remote homologs, structural coverage, structural template for unsolved, structure coverage,
unsolved families, without any solved structures, without structure.

Whenever targetCategoryList and targetRationale contain the following keywords, I set biomedicali
equal to 1:

activator, adhension, antibiotic, binding, biochemistry, biological interest, biomedical, cas-
cade, catalyze, cell development, community nominated, communit-nominated,33 community-
nominated, community request, conserved, disease, coronavirus, drug, drug development, drug
target, effector, enzyme, essential, function, functional studies, functional, gpcr, high value, hig-
value,34 hiv, homeostasis, host, immune, immunity, infection, infectious, inhibitor, interaction,
interact, legionella, medical school, metabolism, mitochondria, model system, operon, parkinsons,
partnership, pathogen, pathology, pathway, phosphatase, pneumonia, protein family of high bio-
logical importance, reagent, receptor, resistance, resistant, salmonella, school of medicine, secret,
sensor, shen lab, shen lab, shen selection, stem cell, substrate, syndrome, synthesis, t-cell, t cell,
therapeutic, thorson lab, toxoplasma, transcription, transport, tuberculosis, tumor, university, vac-
cine, vibrio, virulence, virulent.

Second, I use labs’ selection protocols of projects for additional information. TargetTrack

29“Structural coverage” means the project is in part of the structure space with no or few published structures.
30 BIG and MEGA domain families were defined by the PSI-2 Target Selection Committee as having high value for

extensive coverage. These familes contained hundreds to tens of thousands of members and many subfamilies which
could not be modeled well due to a lack of structural coverage.

31Same as above.
32This typo occurs in the raw data.
33Same as above.
34Same as above.

1

contains a field where labs describe the protocols they used to conduct each stage of the trials. One
type of protocol is the selection protocol. For example, 15 projects were selected because of the
protocol “TSel 101,” which states “These proteins are important for cell development.” I read the
descriptions associated with each selection protocol and manually classified whether each protocol
was “novel” and/or “biomedical.”35 Then I set noveli equal to 1 if the project was selected due to
a “novel” protocol. I set biomedicali equal to 1 if the project was selected due to a “biomedical”
protocol.

Lastly, TargetTrack has a field that contains a list of reference IDs of each molecule in large-
scale bioinformatics databases.36 These reference ids may yield additional information. Whenever
the list of reference ids contains BIG and MEGA reference ids,37 I set noveli equal to 1.

A.2 Lab Funding
The NIGMS released the following FOAs directly tied to the PSI.

Table A1: Funding opportunity announcements (FOA) tied to PSI

Id Title Year

RFA-GM-99-009 PILOT PROJECTS FOR THE PROTEIN STRUCTURE INITIA-
TIVE (STRUCTURAL GENOMICS)

1999

PA-99-116 PROTEIN STRUCTURE INITIATIVE (STRUCTURAL GE-
NOMICS)

1999

PA-99-117 PROTEIN STRUCTURE INITIATIVE (STRUCTURAL GE-
NOMICS) – SBIR/STTR

1999

RFA-GM-00-006 PILOT PROJECTS FOR THE PROTEIN STRUCTURE INITIA-
TIVE (STRUCTURAL GENOMICS)

2000

RFA-GM-05-001 LARGE-SCALE CENTERS FOR THE PROTEIN STRUCTURE
INITIATIVE

2004

RFA-GM-05-002 SPECIALIZED CENTERS FOR THE PROTEIN STRUCTURE
INITIATIVE

2004

RFA-GM-06-004 Structural Genomics Knowledgebase (U01) 2006

RFA-GM-10-004 PSI:Biology Knowledgebase (U01) 2009

RFA-GM-10-005 Centers for High-Throughput Structure Determination (U54) 2009

RFA-GM-10-006 Centers for Membrane Protein Structure Determination (U54) 2009

RFA-GM-10-007 Consortia for High-Throughput-Enabled Structural Biology Part-
nerships (U01)

2009

PAR-10-214 High-Throughput-Enabled Structural Biology Research (U01) 2010

PAR-11-176 High-Throughput-Enabled Structural Biology Partnerships (U01) 2011

35The manual classification is available upon request.
36These reference ids include, but are not limited to, the molecule’s id in the Protein Data Bank (PDB), UniProt,

and the National Center for Biotechnology Information (NCBI) database.
37See footnote 30.

2

These FOAs allowed me to search directly all grants associated with them in the NIH RePORT
database. In addition to the FOAs, I performed a direct search of the labs’ names and abbreviations
using RePORT’s advanced search functionality to obtain data on each labs’ supplementary funding.
The search term I used was (quotation marks included):

“[lab full name]” OR “[lab abbreviation]”
I then aggregate each lab’s sum of research grants by year from the search results.

A.3 Matching Projects to UniProt Molecule Information
As a preliminary to using the UniProt data, I match projects from the TargetTrack information
system to their molecule information on UniProt through two methods.

TargetTrack has a field containing a list of reference ids of each molecule i in large-scale
bioinformatics databases. These reference ids include, but are not limited to, the molecule’s id
in the Protein Data Bank (PDB), UniProt, and the National Center for Biotechnology Information
(NCBI) database. When the UniProt id of the molecule is available in this field, the mapping is
direct. I also use the following id types, which easily convert into UniProt molecule id through
UniProt’s ID Mapping service (Huang et al., 2011; UniProt, 2021a):

• PDB ID: a molecule’s id in the Protein Data Bank (PDB), a database for 3D structures.

• P REFSEQ AC: a molecule’s id in NCBI’s RefSeq protein database.

• EMBL: a molecule’s corresponding gene’s id in European Molecular Biology Laboratory
(EMBL)/GenBank/DNA Data Bank of Japan (DDBJ) CDS database.

• P ENTREZGENEID: a molecule’s corresponding gene’s id in GeneID (Entrez Gene) database.

• P GI: a molecule’s GI number assigned by NCBI.

When the first method fails to find a match (usually due to an entirely missing reference id
field or obsolete records in the relevant databases), I use a second method: directly searching the
molecule’s sequence of amino acids against all protein sequences in UniProt.38 I perform this
search using DIAMOND (Buchfink et al., 2015, 2021), a very fast algorithm for searching similar
sequences. The diamond command I used was:

diamond blastp -d [database name] -q [input sequences in .fasta]

-o [output in .csv] -f 6 qseqid qlen sseqid slen evalue bitscore pident length

-b4.0 --top 5

It produces search results with the following variables:

• qseqid: query sequence’s identifier (the full sequence in this case).

• qlen: query sequence’s length.

• sseqid: search result’s UniProt id.

38Downloadable in .fasta format at https://www.uniprot.org/downloads.

3

• slen: search result’s length.

• evalue: the number of expected hits of similar quality that could be found just by chance in
a random database of the same size. E-value is a commonly used measure for the degree of
similarity between the query sequence and the search result.

• bitscore: the required size of a sequence database in which the current match could be found
just by chance. Bit score does not depend on the size of the database and is a common
alternative measure for the degree of similarity between the query sequence and the search
result.

• pident: percentage of identical matches between the query sequence and the search result
over the alignment length.

• length: the alignment length between the query sequence and the search result.

If the query sequence’s best match search result, determined by the e-value, a standard metric for
assessing sequence similarity, has at least 95% pident and the alignment length length is at least
67% of both qlen and slen, I map the query sequence to the result sequence’s UniProt id.

I was able to match 262,984 (78.4%) of the 335,553 projects to their UniProt entries through
the id mapping method and match an additional 58,593 (17.5%) projects through the direct search.
Overall, I was able to map 321,577 (95.8%) projects to their UniProt entries. I then used UniProt’s
programmatic access for individual entries (UniProt (2021b)) to pull each molecule’s information
from UniProt. I successfully pulled this information for 319,986 (95.4%) projects.

A.4 Data Glossary
This paper uses hundreds of project characteristics extracted from a variety of sources. This data
glossary offers a comprehensive view of these variables.

* Variable is included in the characteristics XXX i jt in training F̃t(Ωt).
† Variable is included in the characteristics XXX i jt in training F∗(ΩT).
‡ Variable is included in the characteristics XXX i jt in training ridge((XXX ,citation)T).
§ Variable is included in the characteristics XXX i jt in training ridge((XXX ,∆download)T).
Please see Appendix B for these models.

4

Table A2: Data glossary

Variables Description

[4 cap letters then 6 digits]i*† Amino acid attributes from the AAindex database (Kawashima et al.
(2007)). Each attribute had an identifier that had four capital letters fol-
lowed by six digits. I started with the 567 attributes in AAindex1, and then
normalized and clustered them to a set of around 30 attribute classes as
in Babnigg & Joachimiak (2010). I used scikit-learn’s implementation of
affinity propagation clustering, which automatically picked 34 clusters. I
then kept the cluster center of each class. For each cluster center attribute,
I calculated the local average value, the local minimum, and the local max-
imum of the sum of the attribute in a seven-amino acid sliding window for
molecule i as in Babnigg & Joachimiak (2010). This resulted in 102 vari-
ables.

[consortium abbreviation]i jt*†‡ § Binary variable = 1 if trial ji was conducted by the given consortium at
time t. Only consortia with more than 70 observations of projects in the
TargetTrack database have their corresponding variables. 36 variables in
total.

[gene]i†‡ § Binary variable = 1 if molecule i is coded for by the given gene. From
UniProt. 48,548 variables in total. Most variables are very sparse. For † I
only include genes that have occurred more than 200 times in my data. For
‡ and § I only include genes that are associated with at least one molecule
whose structure was successfully published in my sample.

[keyword]i†‡ § Binary variable = 1 if molecule i is associated with the given keyword in
UniProt. Examples of keywords include “Alzheimer disease,” “Antioxi-
dant,” “RNA-binding,” “Viral envelope protein.” 1,053 variables in total.
Most variables are very sparse. For † I only include keywords that have
occurred more than 200 times in my data and remove the keyword “3D-
structure” because this is the outcome. For ‡ and § I only include key-
words that are associated with at least one molecule whose structure was
successfully published in my sample.

[superkingdom-phylum]i*†‡ § Binary variable = 1 if molecule i comes from an organisim in the specific
superkingdom and phylum. From UniProt. Due to the large number of
species molecules in TargetTrack represent, I do not go down the UniProt
taxonomy below phylum. 81 variables in total.

aminoAcid [X]i*† Counts the number of times amino acid “X” is in molecule i. 20 variables
for each of amino acids A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S,
T, V, W, Y. Calculated using Biopython’s ProteinAnalysis function from
Bio.SeqUtils.ProtParam module. Contents of certain amino acids are linked
to more successes of trials (Price et al. (2009a,b); Babnigg & Joachimiak
(2010); Jahandideh et al. (2014)).

5

aminoAcidPercent [X]i*† Calculate the amino acid “X” content in molecule i in percentages. 20 vari-
ables for each of amino acids A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R,
S, T, V, W, Y. Calculated using Biopython’s ProteinAnalysis function from
Bio.SeqUtils.ProtParam module. Contents of certain amino acids are linked
to more successes of trials (Price et al. (2009a,b); Babnigg & Joachimiak
(2010); Jahandideh et al. (2014)).

biomedicali*†‡ § Binary variable = 1 if project i was biomedically important. See Ap-
pendix A.1 for variable construction.

citationiy five-year citations and mentions of project i published in year y, from PDBe
(Varadi et al. (2020)). When multiple structures were published on molecule
i, I take the mean values of the five-year citations and year of publication.

downloadim Number of downloads of published project i in month m across the three
major structure databases in the world, from wwPDB (wwPDB (2013)).
Available for Aug 2007–Nov 2013.

Ê(citationiy) Expected five-year citations and mentions of project i published in year y.
See Appendix B.2 for construction.

Ê(downloadiy) Expected five-year downloads of project i published in year y. See Ap-
pendix B.3 for construction.

ÊF̃t
(pi jt) Best-effort replication of the labs’ posterior expectation of the probability

of success of trial ji on day t. See Appendix B.1 for construction.

eukaryotei*†‡ § Maximal percentage identity of molecule i to any eukaryotic molecule.
To construct this variable, I search each molecule i against all UniProt pro-
tein sequences in the Eukaryota superkingdom (UniProt (2021c)). From
the search results, I take the maximal percentage identity of i to any eukary-
otic molecule as the variable eukaryotei. Due to potentially large number
of search results, the search algorithm DIAMOND (Buchfink et al. (2015,
2021)) by default cuts off results at evalue = 0.001. evalue is a well-
understood metric for search quality in this field. If there are no search
results meeting the cutoff, I let eukaryotei = 0.

exposedAminoAcid [X]i*† Counts the number of times amino acid “X” is on the predicted exposed
surface of molecule i. 20 variables for each of amino acids A, C, D, E, F, G,
H, I, K, L, M, N, P, Q, R, S, T, V, W, Y. Exposed surface was predicted using
the NetSurfP (Klausen et al. (2019)) program with the cutoff of relative
solvent accessibility (rsa) > 0.25. Contents of certain amino acids on the
exposed surface of the molecule are linked to more successes of trials (Price
et al. (2009a,b); Babnigg & Joachimiak (2010); Jahandideh et al. (2014)).

6

exposedAminoAcidPercent [X]i*†Calculate the amino acid “X” content on the predicted exposed surface of
molecule i in percentages. 20 variables for each of amino acids A, C, D,
E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y. Exposed surface was
predicted using the NetSurfP (Klausen et al. (2019)) program with the cutoff
of relative solvent accessibility (rsa) > 0.25. Contents of certain amino
acids on the exposed surface of the molecule are linked to more successes
of trials (Price et al. (2009a,b); Babnigg & Joachimiak (2010); Jahandideh
et al. (2014)).

extinctCoeffReducedi*† Molar extinction coefficient of molecule i with reduced cys-
teines. Calculated using Biopython’s ProteinAnalysis function from
Bio.SeqUtils.ProtParam module. Slabinski et al. (2007b) used the
extinction coefficient as a feature to predict project success.

extinctCoeffOxidizedi*† Molar extinction coefficient of molecule i with disulfid bridges. Calculated
using Biopython’s ProteinAnalysis function from Bio.SeqUtils.ProtParam
module. Slabinski et al. (2007b) used the extinction coefficient as a feature
to predict project success.

fundingly Total sum of research grants consortium l received from NIH in year y. See
Appendix A.2 for variable construction.

gapsi*† The average number of insertions in molecule i’s alignment compared to ho-
mologs in UniProt protein sequences. Computed by searching sequence i
against UniProt protein sequences using DIAMOND (Buchfink et al. (2015,
2021)). The output variable gaps captures this value. Insertions were in-
cluded as a feature in Slabinski et al. (2007a,b); Jaroszewski et al. (2008);
Jahandideh et al. (2014).

gapOpeni*† The average number of insertion openings in the alignment compared to
homologs in UniProt protein sequences. Computed by searching sequence i
against UniProt protein sequences using DIAMOND (Buchfink et al. (2015,
2021)). The output variable gapOpen captures this value. Insertions were
included as a feature in Slabinski et al. (2007a,b); Jaroszewski et al. (2008);
Jahandideh et al. (2014).

gravyIndexi*† Grand average of hydropathicity index (GRAVY) of molecule i, used to
represent the hydrophobicity value of a molecule. Calculated using Biopy-
thon’s ProteinAnalysis function from Bio.SeqUtils.ProtParam module. Hy-
drophobicity is a key determinant of success of trials (Slabinski et al.
(2007a,b); Jaroszewski et al. (2008); Price et al. (2009a,b); Babnigg &
Joachimiak (2010); Jahandideh et al. (2014)).

hasPrevSuccessi jkt* Binary variable = 1 if at least one previous trial on molecule i successfully
completed stage k before date t.

hasPrevFailurei jkt* Binary variable = 1 if at least one previous trial on molecule i failed at stage
k before date t.

7

humani*†‡ § Maximal percentage identity of molecule i to any human molecule. To
construct this variable, I search each molecule i against all UniProt protein
sequences in the Homo sapiens (human) species (UniProt (2021d)). From
the search results, I take the maximal percentage identity of i to any human
molecule as the variable humani. Due to potentially large number of search
results, the search algorithm DIAMOND (Buchfink et al. (2015, 2021)) by
default cuts off results at evalue= 0.001. evalue is a well-understood metric
for search quality in this field. If there are no search results meeting the
cutoff, I let humani = 0.

instabilityIndexi*† Instability index of molecule i, which is an estimate of the stability of the
protein in a test tube. Calculated using Biopython’s ProteinAnalysis func-
tion from Bio.SeqUtils.ProtParam module. Instability Index was included
as a feature in Slabinski et al. (2007a,b); Jaroszewski et al. (2008); Jahan-
dideh et al. (2014).

isoelectricPointi*† Isoelectric point of molecule i. Calculated using Biopython’s ProteinAnal-
ysis function from Bio.SeqUtils.ProtParam module. Isoelectric point is a
key determinant of success of trials (Slabinski et al. (2007a,b); Jaroszewski
et al. (2008); Price et al. (2009a,b); Babnigg & Joachimiak (2010); Jahan-
dideh et al. (2014)).

membranei*†‡ § Binary variable = 1 if project i’s UniProt information contains the word
“membrane.”

molecularWeighti*†‡ § Molecular weight of molecule i, calculated using Biopython’s ProteinAnal-
ysis function from Bio.SeqUtils.ProtParam module.

noveli*†‡ § Binary variable = 1 if project i was novel. See Appendix A.1 for variable
construction.

p∗i j,k−1,tk−1
† The predicted probability of success of stage k− 1 of project-trial ji that

started in period tk−1. If k = 0, this variable is set to 1.

percentCoili*† Predicted percentage of coil secondary structure in molecule i. Predicted
using the NetSurfP (Klausen et al. (2019)) program. Secondary structure
features were used in Slabinski et al. (2007a,b); Jaroszewski et al. (2008);
Jahandideh et al. (2014).

percentCoiledCoili*† Percentage of coiled-coil regions in molecule i from UniProt. Coiled-coil
regions were used in Slabinski et al. (2007a,b); Jaroszewski et al. (2008);
Price et al. (2009a,b); Babnigg & Joachimiak (2010); Jahandideh et al.
(2014).

percentDisorderedi*† Predicted percentage of disordered region in molecule i. Predicted using the
NetSurfP (Klausen et al. (2019)) program. Disordered region was used as
a feature in Slabinski et al. (2007a,b); Jaroszewski et al. (2008); Price et al.
(2009a,b); Babnigg & Joachimiak (2010); Jahandideh et al. (2014).

8

percentDisorderedUniproti*† Percentage of disordered region in molecule i from UniProt. Disordered
region was used as a feature in Slabinski et al. (2007a,b); Jaroszewski et al.
(2008); Price et al. (2009a,b); Babnigg & Joachimiak (2010); Jahandideh
et al. (2014).

percentExposedi*† Predicted percentage of amino acids on the exposed surface of molecule i.
Exposed surface was predicted using the NetSurfP (Klausen et al. (2019))
program with the cutoff of relative solvent accessibility (rsa) > 0.25. Extent
of the exposed surface of the molecule are linked to more successes of trials
(Price et al. (2009a,b); Babnigg & Joachimiak (2010); Jahandideh et al.
(2014)).

percentHelixi*† Predicted percentage of helix secondary structure in molecule i. Predicted
using the NetSurfP (Klausen et al. (2019)) program. Secondary structure
features were used in Slabinski et al. (2007a,b); Jaroszewski et al. (2008);
Price et al. (2009a,b); Babnigg & Joachimiak (2010); Jahandideh et al.
(2014).

percentLowComplexityi*† Predicted percent low-complexity regions in molecule i. Computed using
the SEG program (Wootton (1994)). Low-complexity regions were used as
features in Slabinski et al. (2007a,b); Jaroszewski et al. (2008).

percentSignalPeptidei*† Percentage of signal peptide in molecule i. From UniProt. Slabinski
et al. (2007a,b); Price et al. (2009a); Babnigg & Joachimiak (2010); Ja-
handideh et al. (2014) state molecules containing signal peptides have very
low chances of success.

percentStrandi*† Predicted percentage of strand secondary structure in molecule i. Predicted
using the NetSurfP (Klausen et al. (2019)) program. Secondary structure
features were used in Slabinski et al. (2007a,b); Jaroszewski et al. (2008);
Price et al. (2009a,b); Babnigg & Joachimiak (2010); Jahandideh et al.
(2014).

percentTransmembraneHelicesi*†Percentage of transmembrane helices in molecule i. From UniProt. Trans-
membrane helices were used as a feature in Slabinski et al. (2007a,b);
Jaroszewski et al. (2008); Price et al. (2009a,b); Babnigg & Joachimiak
(2010); Jahandideh et al. (2014) .

pfami A list of protein families associated with molecule i, from UniProt (UniProt
(2021b)).

phase1i jkt† Binary variable = 1 if stage k of project-trial ji started in phase 1 of PSI
(pilot phase). I let this variable be 1 if the stage start year is before or in
2005. Phase 1 ended in 2004. However, based on Figures D1 and 6, one
can clearly see that 2004 and 2005 are transition periods: output quantity
jumped up in 2004. I therefore let 2004 and 2005 be part of both Phase 1
and Phase 2.

9

phase2i jkt† Binary variable = 1 if stage k of project-trial ji started in phase 2 of PSI
(production phase). I let this variable be 1 if the stage start year is between
2004 and 2010. Phase 2 is between 2005 and 2008. However, based on Fig-
ures D1 and 6, one can clearly see that 2009 and 2010 are transition periods:
output quantity stayed high but citations reversed the trend. I therefore let
2009 and 2010 be part of both Phase 2 and Phase 3.

phase3i jkt† Binary variable = 1 if stage k of project-trial ji started in phase 3 of PSI
(biomedical phase). I let this variable be 1 if the stage start year is 2009 and
beyond.

prevPubiy*†‡ § Number of publications on molecule i by the start of year y, from UniProt
(UniProt (2021b)).

prevStructiy*†‡ § Number of already published structures in the same protein families asso-
ciated with molecule i by the start of year y. To construct this variable, I
first pull from UniProt the list of protein families p f ami associated with
molecule i. I then obtain a mapping of each protein family to its associated
structures from EMBL-EBI (2021) and the structures’ publication dates (I
take the structure’s deposition date to the PDB as the publication date) from
Varadi et al. (2020). Merging the datasets results in prevStructiy. If i is
associated with multiple protein families, I take the average of the number
of already published structures in each protein family associated with i.

prevSuccessesi jkt* Number of previous trials on molecule i that have successfully completed
stage k before date t.

prevTrialsi jkt* Number of previous trials on molecule i that have reached stage k before
date t.

refIdi A list of reference ids of molecule i in TargetTrack, used to map i to its
information in UniProt.

seqi Sequence representation of molecule i’s amino acids, unique identifier of
project i.

seqLengthi*†‡ § The number of amino acids in molecule i.

simPrevPro jit The maximal degree of similarity between project i and all previously at-
tempted projects at time t, measured by the bit score (see Appendix A.3 for
the definition of bit score). Computed by searching sequence i against all
sequences attempted before time t using DIAMOND (Buchfink et al. (2015,
2021)). The maximum of the output variable bitscore among research re-
sults was used as simPrevProjit .

10

surfaceRuggednessi*† Surface ruggedness of molecule i, defined by the total accessible surface of
molecule i divided by the accessible surface predicted based on molecular
mass. The total accessible surface of the molecule i is calculated by sum-
ming the predicted absolute solvent accessibility of each amino acid from
NetSurfP (Klausen et al. (2019)). The accessible surface predicted based
on molecular mass is calculated using the formula 6.3(molecularMass)0.73

(Miller et al. (1987)). Jahandideh et al. (2014) used this variable as a fea-
ture.

trialIdi j Trial id of project-trial ji, unique identifier of trial ji in TargetTrack.

V̂arF̃t
(pi jt) Best-effort replication of the posterior variance of the labs’ beliefs about the

probability of success of trial ji on day t. See Appendix B.1 for construc-
tion.

Yi jt Binary variable = 1 if trial ji on date t was successful.

Yi jkt Binary variable = 1 if intermediate stage k of trial ji on date t was success-
ful. Yi j0t = 1 if DNA was successfully cloned. Yi j1t is only defined when
Yi j0t = 1 and is equal to 1 if protein was successfully expressed. Yi j2t is
only defined when Yi j0t = 1 and Yi j1t = 1 and is equal to 1 if protein was
successfully purified. Yi j3t is only defined when Yi j0t ,Yi j1t ,Yi j2t = 1 and is
equal to 1 if protein was successfully crystalized for X-ray crystallography
or prepared for NMR or cryo-EM. Yi j4t is only defined when all previous
stages were successful and is equal to 1 if the structure was successfully
produced and deposited to the Protein Data Bank (PDB) for publication.

B Constructing Posteriors

B.1 Random Forest for Trial Success Probabilities
There are two kinds of models of trial success probability in this paper. The first one is a model
that captures how labs formed posterior beliefs. It does not have to produce an unbiased estimate
of the true probability of success of a trial. However, it has to produce an unbiased estimate of the
labs’ perceived posterior beliefs about the probability of success. My implementation of F̃t closely
follows the machine learning approach the labs described in published journal articles.

The second one is a model of the true data generating process of trial success probability F∗,
which is used in simulating counterfactual outcomes. Estimating F∗ is different from estimating
the posterior using F̃t because F∗ needs to produce an unbiased estimate of the true probability of
success of a trial. As such, my implementation of F∗ deviates from F̃t in several ways to correct
the potential bias of and improve upon the machine learning systems the labs described.

In this appendix, I first explain my implementation of F̃t ; then I move on to discuss how my
implementation of F∗ deviates from that of F̃t .

11

B.1.1 Implementation of F̃t

My implementation of F̃t fits stage-specific models to account for information embodied in out-
comes of intermediate stages. Recall that each trial ji has multiple sequential stages and the overall
probability of success of ji is equal to the product of the probabilities of success for all sequential
stages pi jt = ∏

4
k=0 pi jkt . The intermediate outcomes Yi jk for stages k = 0,1, ... up to the point when

the overall trial failed/succeeded provides information for future trials’ potential.
For a given quarter q(t) and each of the stages k = 0,1,2,3,4, I let the information set Ωk,q(t)

consist of project-trial outcomes realized before quarter q(t) at stage k and these project-trials’
characteristics. Following when the labs started to use machine learning to form posterior, I let q(t)
to be between 2005 and 2015. For q(t) = 2005Q1, I use the trial outcomes realized before 2005
and these trials’ characteristics as the initial information set Ω2005Q1. Project-trial characteristics
XXX i jkt I use for training F̃t and prediction of labs’ posterior beliefs fall under three categories:39

• Physicochemical properties of molecule i based on scientific reasoning. These variables
were identified by the series of journal articles the labs published and were quite similar
across labs and time.

• Other characteristics of project i, for examples, novelty, biomedical importance, and the
number of prior publications on molecule i.

• Past successes and failures of project i at stage k.

Then, for the given quarter q(t) and each of the stages k= 0,1,2,3,4, I fit a random forest model
F̃k,q(t)(Ωk,q(t)) using RandomForestClassifier from python package scikit-learn. Random
forest is an ensemble40 machine learning method. The algorithm constructs a large number of
decision trees at training time. Each decision tree is a learning model that aims to find the project-
trial characteristics predictive of success/failure in the training set. When it comes to prediction, the
trained random forest classifier F̃k,q(t)(Ωk,q(t)) would pool individual trees and average predicted
values of {p̂ntree

i jkt } from individual trees as the final output. As Jahandideh et al. (2014) did, I set
the number of trees in the random forest equal to 1000.

Decision trees and random forests are known for often overfitting without regularization. To
avoid overfitting, I regularize by restricting the hyperparameters max depth,41 min samples leaf,42

max features,43 and min samples split.44 I perform model selection with a grid search of the

39Please see Appendix A.4 for the full list of variables used.
40Ensemble methods use multiple learning models to obtain better predictive performance than could be obtained

from any of the constituent learning models alone.
41This hyperparameter determines the maximum depth of each decision tree.
42This hyperparameter determines the minimum number of observations a node in the decision tree must have

before it can be split.
43This hyperparameter determines the maximum number of features to consider when looking for the best split.
44This hyperparameter determines the minimum number of observations required to split a node.

12

combinations of the four hyperparameters.45 For each hyperparameter combination, I evaluate
the model with five-fold cross validation using scikit-learn’s cross validate function. In
each iteration of the cross-validation, the function fits a random forest on four out of five cross-
validation folds and then computes the cross-validation score by comparing the model’s predictions
with the actual data from the remaining fold. I use the average log likelihood (log loss scoring in
scikit-learn) as the cross-validation scoring method. I choose the hyperparameter combination
that maximizes the average log likelihood in cross-validation.

After training the models F̃k,q(t) for k = 0,1,2,3,4 for a given q(t), I predict ÊF̃q(t)
(pi jt) and

V̂arF̃q(t)
(pi jt) for each project-trial in the choice set Clt at decision time t as follows. I first collect

the predictions { p̂ntree
i jkt } from the 1000 individual decision trees in F̃k,q(t)(Ωk,q(t)), and then compute

p̂ntree
i jt = ∏

4
k=0 p̂ntree

i jkt . There are 1000 values in the set {p̂ntree
i jt }. I let

ÊF̃q(t)
(pi jt) = p̄ntree

success,i jt , (14)

V̂arF̃q(t)
(pi jt) = s2(pntree

success,i jt) (15)

Although I extensively reference the labs’ implementations of machine learning systems when I
implement F̃t , my estimate of the posterior is not a perfect replica of the labs’ posteriors. I note why
replicating perfectly the labs’ posterior beliefs would be difficult and where my implementation
corresponds to and deviates from the labs’ learning and updating process below:

• I include in XXX i jt the set of physicochemical properties of molecules identified in the labs’
published journal articles (Slabinski et al., 2007a,b; Jaroszewski et al., 2008; Price et al.,
2009a,b; Babnigg & Joachimiak, 2010; Jahandideh et al., 2014). This set is the union of the
sets of such properties in different articles (to minimize the risk of selection on unobserv-
ables) and is fixed for all labs and time periods in my implementation. In contrast, though
similar across lab and time, the set of physicochemical properties the labs used in training
and prediction still varied. It is impossible to capture all of these potential variations dur-
ing the labs’ long operational history (some may not have been recorded by the published
articles).

• The construction of some variables in XXX i jt requires using software packages that are con-
stantly being updated or have become obsolete. I make my best effort to construct variables
using methods as close to the labs’ original approach as possible (see Appendix A.4).

• The XXX i jt in my implementation includes past trial outcomes of projects while the labs’ im-
plementations did not explicitly include those characteristics. Still, it is reasonable to believe
that researchers working on a project would update their beliefs on the potential of the project
upon seeing a trial success/failure.

45To reduce computational burden, I do not perform model selection for all F̃k,q(t). Rather, for each k = 0, ...,4, I
construct Ωk,T using all outcomes at stage k and only perform model selection for F̃k,T on this full training set. I then
use the selected hyperparameters to train the models F̃k,q(t) where q(t) = 2005Q1,2005Q2, ...,2015Q4. The set of
max depth used in grid search is [int(log(sample size,2)),2 · int(log(sample size,2)),3 · int(log(sample size,2)),4 ·
int(log(sample size,2))]. The set of min samples lea f used in grid search is [1,2,4]. The set of max f eatures used
in grid search is [0.1,0.2,0.3,0.4] of the total number of features. The set of min samples split used in grid search is
[8,16,32,64,128].

13

• I use random forest as the model of posterior updating for all labs and time periods. In
contrast, the machine learning models the labs used in training and prediction varied across
lab and across time. It is impossible to capture all of these potential variations during the
labs’ long operational history (some may not have been recorded by the published articles).

• I set the frequency of “updating” and refitting models at the quarterly interval. In contrast,
the labs’ actual belief updating frequency is not clearly documented. I use the quarterly
interval because training models at a finer interval, such as at the daily frequency, places
large computational and storage burden. The day-to-day change of the information set Ω

was also relatively small. Therefore, to improve computational tractability, I coarsen the
frequency of refitting new models to quarterly.

• My model predicts the overall potential of success of a trial while the labs’ implementa-
tions focused on predicting the potential of success of bottleneck stages of a trial. That is,
for stages where success rates were usually reasonable (for example cloning the DNA), the
labs were often not explicitly reliant on something as rigorous as supervised machine learn-
ing systems to form and update beliefs, while they were explicitly reliant on such systems
for predicting the potential of success in crystallizing a molecule and studying its structure
through X-ray crystallography.

• The output the labs’ systems produced may not exactly be ÊF̃q(t)
(pi jt) and V̂arF̃q(t)

(pi jt). For
example, the model in Slabinski et al. (2007b) predicted the probability of success as an
intermediate outcome. The final output was an integer score between 1 and 5, where 1 rep-
resents “optimal” and 5 represents “very difficult.” The labs’ systems did not always predict
V̂arF̃q(t)

(pi jt). When they did, the measure took the form of comparing predictions from mul-
tiple models side by side (Slabinski et al., 2007a,b; Babnigg & Joachimiak, 2010; Jahandideh
et al., 2014). It is reasonable to believe that labs had some understanding that predictions
from different models (or submodels of an ensemble model) differed, and looking at how
those predictions varied was valuable, though they did not percolate the idea down to form
an additional metric just to measure that variation. This seems consistent with the notation
that the labs used heuristics to guide their exploration of high-variance projects.

B.1.2 Implementation of F∗

The implementation of F∗ is almost identical to that of F̃t except for a few deviations. First of
all, a new model F̃k,q(t) (for stages k = 0, ..,4) is trained for every quarter q(t) between 2005Q1
and 2015Q4, incorporating new trial outcomes realized in each quarter. In contrast, F∗k (for stages
k = 0, ...,4) is trained only on the full information set ΩT . ΩT covers the characteristics and
outcomes of all trials in my trial allocations and outcomes dataset in the entire sample period.

Second, F∗ uses additional covariates to correct the potential bias of F̃t in predicting trial suc-
cess probabilities. The model F̃t may be biased in predicting trial success probabilities because it
does not account for the propensity of observing a specific stage of a trial. To see this, think about
the probability of success of stage 1 of a trial. We observe stage 1 of a trial only if stage 0 of the
trial was successful. If the probabilities of success of stages 0 and 1 are positively correlated, then
we are more likely to observe stage 1 of trials that are more likely to succeed in stage 1. Therefore,

14

models trained with the observed data on stage 1 would produce prediction results that are posi-
tively biased. Correcting this bias is simple if we assume that the selection into observing a given
stage is only based on observable characteristics of trials: we can use the predicted probability of
success of the previous stage as the propensity score of observing the given stage. As such, I in-
clude p∗i j,k−1,tk−1

, the predicted probability of success of stage k−1 of trial ji that started in period
tk−1, as a covariate when I train F∗k . For stage k = 0, I set this variable to 1. The labs’ published
articles offer no discussion about this source of bias, so I do not include this variable in training F̃t .

Another difference between F∗ and F̃t is that F∗ does not include variables on previous trial
outcomes as covariates. In simulations, all previous trial outcomes of a project are simulated and
should not shift the project’s true probability of success; therefore, the simulated counterfactual
outcome of a trial should not be based on the simulated previous outcomes.

To further improve the predictive power of F∗, I include in F∗ project-trial characteristics
the labs did not use in their machine learning systems. I include keywords and genes associated
with the molecule i. I also include three phase-specific dummy variables to capture the effects
of different phases of the grant program on the probabilities of success, as I learned during my
conversations with NIH program officers that the labs underwent retooling corresponding to the
changes of phases.

B.2 Ridge Regression for Citations
Let the model be ridge(XXX ,citation)T), where the training set (XXX ,citation)T represents the charac-
teristics and citationiy of all published projects in my data. The goal of this model is to predict
E(citationiy|XXX iy,ridge((XXX ,citation)T)), the expected number of five-year citations a project i pub-
lished in year y would generate conditional on the project’s characteristics XXX iy.

The number of characteristics that could potentially predict higher citations is very large. Char-
acteristics ranging from the organism the molecule i is from to the gene that expresses molecule i
could all contribute to the biomedical significance and research interests on molecule i. The num-
ber of characteristics is on the order of hundreds, most of which are very sparse, while I only have
10,424 observations.46 This calls for regularization to avoid overfitting.

I use a ridge regression from the python package scikit-learn. The project characteristics
XXX iy included for model fitting are shown in Appendix A.4. I choose the regularization hyperparam-
eters using cross-validation with the RidgeCV function provided by the scikit-learn package.

I standardize the outcome variable citationiy by subtracting away the lab mean value of this
variable and then dividing by the lab standard deviation as publications from different labs had
large variations in citation numbers. When the model makes a prediction, I multiply the predicted
value with the lab standard deviation and add the lab mean to get the predicted citations.

I assess model fit by comparing the actual citations with their out-of-sample predicted citations
under five-fold cross validation. Figure B1 shows the distribution of the predicted citations cor-
rectly captures a high proportion of zero values in the actual data. Figure B2 shows a scatterplot
of predicted citations against the actual citations. A linear regression of the predicted citations on
the actual citations without constant shows an R2 = 0.580.

The predicted citations Ê(citationiy|XXX iy,Ridge((XXX ,citation)T)) has a y subscript because some

46The total number of published projects in my data is 10,501. 77 published projects in my data did not give the
PDB ids of their publications so I was not able to map their citation information.

15

of the important characteristics vary with time, for example, the number of publications on molecule
i prior to the year of publication of the structure. In Section 3.3, since we do not know which exact
year the structure of each trial in the choice set would have been published if the trial was allocated,
I remove the y subscript by averaging the predicted citations for each molecule across years so that

Ê(citationi) =
1

16

2015

∑
y=2000

Ê(citationiy|XXX iy,ridge((XXX ,citation)T)). (16)

In simulations, I simulate both the outcome (success or failure) of an allocated trial and the
date that outcome is realized. In that case, the y subscript is preserved for the predicted citations
of the publication.

Figure B1: Distributions of actual citations and predicted citations

Note: Distributions are truncated at 60. Bin width is 4.

16

Figure B2: Scatterplot of predicted citations against actual citations

B.3 Ridge Regression for Downloads
Before we start predicting downloads, the raw download data needs to be transformed because
the number of downloads shows a strong time trend over the lifecycle of a publication. The raw
download data I obtain consists of monthly downloads on the structure level between Aug 2007
and Nov 2013 for all publicly available structures human beings know of. The number of structure-
month observations is 5,484,800. As some structures in a given month observed were published a
long time ago while some just got published, comparing these structures’ raw download counts in
a month would be misleading. As shown in Figure B3, downloads peak within a month since the
publication of a structure and then sharply decline over the following months until reaching some
steady level in approximately two years.

I perform a transformation of the raw download data to detrend it as follows. Let pubAge(i,m)
be the age of publication i (in months) in month m. To detrend, I first compute downloadpubAge(i,m),
the mean downloads of structures that have been published for pubAge(i,m) months.47 I then com-
pute how much the number of downloads structure i had in month m deviates from this mean,
˜downloadim = downloadim − downloadpubAge(i,m). I then define ∆downloadi, the average de-

viation of structure i’s monthly downloads from the mean download trend, by the average of
˜downloadim, in other words ∆downloadi = ˜downloadim. I treat the variable ∆downloadi as the

outcome variable. If there are multiple structures on the same project i, I take the mean of their

47I pool observations with pubAge > 25 months in computing this mean as the mean number of downloads flattens
by 25 months since publication.

17

average deviations as ∆downloadi. I then match the download data with the project-trial charac-
teristics of completed projects in my data.

Let the model be ridge((XXX ,∆download)T), where the training set (XXX ,∆download)T represents
the characteristics and ∆downloadi of all published projects in my data. The goal of this model
is to predict E(∆downloadiy|XXX iy,ridge((XXX ,∆download)T)), the expected average deviation of the
structure’s monthly downloads from the mean download trend for a project i published in year y,
conditional on the project’s characteristics XXX iy. There is a y subscript because some of the important
characteristics vary with time, for example, the number of publications on molecule i prior to the
year of publication of the structure.

The number of characteristics that could potentially predict higher downloads is very large.
Characteristics ranging from those of molecule i’s organism to those of molecule i’s gene could
all contribute to the level of interest on molecule i. The number of characteristics is on the order
of hundreds, most of which are very sparse, while I only have 10,424 observations. This calls for
regularization to avoid overfitting.

I use a ridge regression from the python package scikit-learn. The project characteristics
XXX iy included for model fitting are shown in Appendix A.4. I choose the regularization hyper-
parameters using cross-validation with the RidgeCV function provided by the scikit-learn pack-
age.

I assess model fit by comparing the actual ∆downloadiy with their out-of-sample predicted val-
ues under five-fold cross validation. Figure B4 shows a comparison of the distributions. As ridge
regression shrinks all regression coefficients towards zero, the distribution of the predicted values
is narrower. Still, the predicted values capture the rank order of the actual data well. Figure B5
shows a scatterplot. The plot shows a relationship quite close to the line y = x. Figure B6 shows a
binned scatterplot.

In Section 3.3 where we show descriptives, I perform additional transformations on the pre-
dicted value Ê(∆downloadiy|XXX iy,ridge((XXX ,∆download)T)). First, the predicted value has a y sub-
script because some of the important characteristics vary with time, for example, the number of
publications on molecule i prior to the year of publication of the structure. Since we do not know
which exact year the structure of each trial in the choice set would have been published if the trial
was allocated, I remove the y subscript by averaging the predicted values for each molecule across
years so that

Ê(∆downloadi) =
1

16

2015

∑
y=2000

Ê(∆downloadiy|XXX iy,ridge((XXX ,∆download)T)). (17)

Second, the variable Ê(∆downloadi) predicts the average deviation of monthly downloads from
a trend and is difficult to interpret. I therefore transform this variable to a prediction of five-year
downloads Ê(downloadi) by using the following formula:

Ê(downloadi) =
59

∑
pubAge=0

downloadpubAge +60× Ê(∆downloadi), (18)

where ∑
59
pubAge=0 downloadpubAge = 23960.11 is computed based on the full download data with

18

5,484,800 structure-month observations.
In simulations, I simulate both the outcome (success or failure) of an allocated trial and the date

that outcome is realized. In that case, the y subscript is preserved for the predicted average devia-
tion of monthly downloads of the published projects. Therefore the predicted five-year downloads
becomes

Ê(downloadiy) =
59

∑
pubAge=0

downloadpubAge +60× Ê(∆downloadiy|XXX iy,ridge((XXX ,∆download)T)).

(19)

Figure B3: Average downloads per structure in months since publication

Note: The plot is based on 5,484,800 structure-month observations of download counts between
Aug 2007 and Nov 2013. Each blue dot aggregates in this data the average monthly downloads for
structures published m months ago.

19

Figure B4: Distributions of predicted Ê(∆downloadiy) against actual ∆downloadiy

Figure B5: Scatterplot of predicted Ê(∆downloadiy) against actual ∆downloadiy

20

Figure B6: Binned scatterplot of predicted Ê(∆downloadiy) against actual ∆downloadiy

C Additional Details on Modeling and Estimation Procedure

C.1 Functional Form of Payoff Function πi jt(aaalt , pi jt ;θθθ Xl)

To begin, recall that the payoff πi jt(aaalt , pi jt ;θθθ Xl) of project-trial ji at t given action aaalt has a
probability distribution depending on pi jt . The lab or the economist does not perfectly know
pi jt , but previous outcomes of trials reveal information about it so one can form a posterior
F̃t(pi jt |Ωt). Integrating πi jt(aaalt , pi jt ;θθθ Xl) over the posterior, we obtain the posterior expected pay-
off πi jt(Ωt ,aaalt ;θθθ Xl).

I define a function q(aaalt , pi jt) that maps the probability of success to the probability of payoff
of project-trial ji at t given actions. When a project-trial is not allocated on day t, it does not pay off
even though it may have a nonzero probability of success. Moreover, the labs often simultaneously
allocated multiple trials to the same project. A successful trial ji of project i should only receive
payoff if the simultaneous trials (j−m)i,(j−m+ 1)i, ...,(j− 1)i fail, because we have assumed
only the first successful trial/publication on a project produces welfare. Each trial ji is a Bernoulli
trial with probability pi jt . We can express q(aaalt , pi jt) as follows:

q(aaalt , pi jt) = ai jt(1− pi jt)
m pi jt , (20)

where trials (j−m)i,(j−m+ 1)i, ...,(j− 1)i are in the choice set Clt and trial (j−m)i is the

21

smallest-numbered trial of project i in Clt .48 When m = 0, trial ji is the smallest-numbered trial of
project i in Clt and its probability of payoff is simply ai jt pi jt .

I then specify a deterministic reward function, which captures the amount of payoff a lab will
get when a trial pays off. I let the reward function r(XXX it ;θθθ Xl) be a function of project i’s char-
acteristics XXX it on day t. θθθ Xl are the welfare weights on XXX it and are to be estimated. To reduce
the number of parameters, I restrict XXX it to correspond to the set of NIH evaluation metrics. XXX it in-
cludes a constant 1 to capture preference for quantity; noveli and prevStructiy to capture preference
for novelty; biomedi and prevPubiy to capture preference for biomedical importance; and humani,
eukaryotei, and membranei to capture preferences for human, eukaryotic, and membrane proteins,
respectively. I let r(XXX it ;θθθ Xl) have a simple linear form

r(XXX it ;θθθ Xl) = 1 ·θquant,l +biomedi ·θbiomed,l + ...+membranei ·θmembrane,l. (21)

Whenever a trial pays off, the lab receives a baseline amount θquant,l plus additional amounts
depending on the other characteristics of the project.

We can then break the posterior expected payoff into a few pieces:∫
πi jt(aaalt , pi jt ;θθθ Xl) dF̃t(pi jt |Ωt) =

∫
r(XXX it ;θθθ Xl) ·q(aaalt , pi jt) dF̃t(pi jt |Ωt)

= ai jt · r(XXX it ;θθθ Xl)
∫ let it be Mi jt︷ ︸︸ ︷

[(1− pi jt)
m pi jt] dF̃t(pi jt |Ωt)︸ ︷︷ ︸

estimated offline

. (22)

Notice that Mi jt only depends on pi jt . Since we have estimated F̃t(pi jt |Ωt) offline (see Ap-
pendix B.1), we can estimate EF̃t

(Mi jt) and VarF̃t
(Mi jt) offline as well.49

Also notice that given the breakdown of the posterior expected payoff in equation (22), V A
i jt does

not depend on the full action vector aaalt . It only depends on the action ai jt . Plugging in equation
(22) into V A

i jt in equation (3) and evaluating it at ai jt = 1, we obtain:

V A
i jt(Ωt ,ai jt = 1;θθθ l) =

∫
πi jt(ai jt = 1, pi jt ;θθθ Xl) dF̃t(pi jt |Ωt) + Bi jt(Ωt ,ai jt = 1;θθθ Bl)

= r(XXX it ;θθθ Xl)EF̃t
(Mi jt)+Bi jt(Ωt ,ai jt = 1;θθθ Bl).

(25)

For the main model, V A
i jt(Ωt ,ai jt = 1;θθθ l) = r(XXX it ;θθθ Xl)EF̃t

(Mi jt) +
√

θB1,l
j + θB2,l · (t − t ′i,t). For

48q(aaalt , pi jt) = ai jt(1− pi, j−m,t)...(1− pi, j−1,t)pi jt . As all trials on day t share the same information set Ωt , the
posteriors for pi, j−m,t , ..., pi jt are the same.

49Each trial ji is a Bernoulli trial with probability of success pi jt ,

EF̃q(t)
(Mi jt) = EF̃q(t)

((1− pi jt)
m pi jt) = [1−EF̃q(t)

(pi jt)]
m ·EF̃q(t)

(pi jt), (23)

VarF̃q(t)
(Mi jt) =VarF̃q(t)

((1− pi jt)
m pi jt)

= {VarF̃q(t)
(pi jt)+ [EF̃q(t)

(pi jt)]
2}×{VarF̃q(t)

(1− pi jt)+ [EF̃q(t)
(1− pi jt)]

2}m

− [EF̃q(t)
(pi jt)]

2×{[EF̃q(t)
(1− pi jt)]

2}m.

(24)

Plugging in ÊF̃q(t)
(pi jt) and V̂arF̃q(t)

(pi jt) into the above equations, one obtains ÊF̃q(t)
(Mi jt) and V̂arF̃q(t)

(Mi jt).

22

alternative model 1, where Bi jt(·) = 0, this reduces to V A
i jt(Ωt ,ai jt = 1;θθθ l) = r(XXX it ;θθθ Xl)EF̃t

(Mi jt).
For alternative model 2, V A

i jt(Ωt ,ai jt = 1;θθθ l) = r(XXX it ;θθθ Xl)EF̃t
(Mi jt)+ψ(·)r(XXX it ;θθθ Xl)VarF̃t

(Mi jt).
Evaluating V A

i jt at ai jt = 0, we obtain V A
i jt(Ωt ,ai jt = 0;θθθ l) = 0 for all models.

Moreover, with this functional form, the second constraint in equation (4) will always be guar-
anteed by the solution. Notice that in most models including the main model, for all ji < j′i ∈Clt ,
V A

i jt(Ωt ,ai jt = 1;θθθ l) ≥ V A
i j′t(Ωt ,ai j′t = 1;θθθ l) because the two terms only differ by EF̃t

(Mi jt) ≥
EF̃t

(Mi j′t). For models based on the Gittins index, the two terms also differ by VarF̃t
(Mi jt) ≥

VarF̃t
(Mi j′t) and the constraint continues to be satisfied. In equation (10), we add an εit to both

terms and the constraint continues to be satisfied.

C.2 Specifying Choice Set Clt

As discussed in Section 2, the major labs in my data received new projects through three ways
with close NIH involvement: 1) a centralized planning committee periodically assigned families
of novel molecules; 2) the biomedical research community nominated projects; and 3) the labs
determined projects of their own interest, which they reported to the NIH well in advance. These
processes placed limits on the new projects the labs could plausibly consider when they made trial
allocations. These limits allow me to considerably reduce Clt .

I restrict Clt to include only the following project-trials. For an older project i that the lab has
attempted up until trial ji in period t ′ < t, I include trials (j + 1)i, ...,(j + nt)i in Clt . For a new
project i′ that the lab has not attempted until t but attempts within the next six months, I include
trials 1i′, ...,(nt)i′ in Clt . One can also consider using alternative windows for the new projects,
such as projects attempted within the next three months or nine months. Doing so changes the
magnitudes of the estimates, but all qualitative results are the same as when using six months as
the window. Likewise, adding some new projects that the lab could have considered but never
actually attempted could change the estimates, but the qualitative results should stay the same.

I further reduce the sizes of the choice sets used in estimation by taking random subsamples
of Clt . The reason is related to computation. Labs at times allocate hundreds of project-trials on a
day and they usually had tens of thousands of projects in their portfolios. The sizes of some choice
sets Clt could be on the order of millions. Given that we have thousands of periods, if we use the
full choice sets Clt , we need to compute log likelihood for billions of choices in each iteration of
maximum likelihood. This would result in a very large memory burden and slow computation.
Moreover, it is not necessary to include every possible choice in Clt to consistently estimate θθθ l . A
random subsample of the choices on each side of the threshold value would be sufficient. Due to
the sheer number of projects in each lab’s portfolio, the set of actual trials is much smaller than the
set of not-allocated trials. I therefore reduce the sizes of the choice sets for estimation by taking
random subsamples of the latter on the level of project and date. Let the reduced choice sets be
CR

lt ⊂Clt . Table C1 shows the project-trials in CR
lt after random sampling from Clt .

23

Table C1: Trials included in the reduced choice set for estimation

Project Trial Actually allocated on day t? Notes

iiii

Trials (j+1)i through
(j+m−1)i were actually
allocated on day t, include all
in CR

lt . When no trial was
allocated on day t, m equals
1.
i
Trials (j+m)i through
(j+nlt)i were not actually
allocated on day t, include
one random trial (j+ r)i in
CR

lt .

(j+1)i Y
...

...

(j+m−1)i Y

(j+m)i N
...

...

(j+ r)i N
...

...

(j+nlt)i N

Notes: For an older project that has been attempted before t, j equals the number of trials allocated
to the project before t. For a new project, j = 0. Trials in black are included in the reduced choice
set CR

lt . Trials in grey are in the choice set Clt but are excluded from CR
lt to reduce computational

burden.

24

D Additional Results

Figure D1: Observed output: number of publications and citations

Note: The blue dots show the number of published structures on unique molecules in a given year
divided by the lab consortium’s funding in millions in that year. The red crosses show the number
of 5-year citations and mentions the published structures in that year generated, divided by the lab
consortium’s funding in millions in that year. Each plot shows the average value across the four
large lab in each year. The disaggregated values are in Figure 6.

25

Table D1: Comparison of likelihoods of different models, JCSG

Free parameters Avg P̂(ao
i jt = 1;θθθ l) Avg P̂(ao

i jt = 0;θθθ l)

Model in Bi jt(·) Log likelihood actual allocation actual nonallocation

Static 0 -1,308,021 0.691 0.891

Gittins 0 -1,104,171 0.640 0.910

UCB 1 -544,118 0.854 0.981

FlexGittins 1 -1,056,772 0.640 0.917

FlexGittins+D 2 -349,531 0.644 0.981

UCB+D 2 -206,951 0.909 0.995

Note: Estimation uses data between 2005 and 2015 from JCSG, one of the four large labs in the
data. The number of trials actually allocated was 320,295. The number of trials in the choice sets
after random sampling is 5,807,902. The rest of the notes of Table 2 apply.

Table D2: Comparison of likelihoods of different models, MCSG

Free parameters Avg P̂(ao
i jt = 1;θθθ l) Avg P̂(ao

i jt = 0;θθθ l)

Model in Bi jt(·) Log likelihood actual allocation actual nonallocation

Static 0 -636,089 0.644 0.994

Gittins 0 -473,481 0.669 0.996

UCB 1 -274,230 0.769 0.998

FlexGittins 1 -402,754 0.681 0.997

FlexGittins+D 2 -225,201 0.780 0.998

UCB+D 2 -157,987 0.850 0.999

Note: Estimation uses data between 2005 and 2015 from MCSG, one of the four large labs in the
data. The number of trials actually allocated was 141,059. The number of trials in the choice sets
after random sampling is 39,136,035. The rest of the notes of Table 2 apply.

26

Table D3: Comparison of likelihoods of different models, NYSGRC

Free parameters Avg P̂(ao
i jt = 1;θθθ l) Avg P̂(ao

i jt = 0;θθθ l)

Model in Bi jt(·) Log likelihood actual allocation actual nonallocation

Static 0 -677,382 0.538 0.990

Gittins 0 -550,827 0.561 0.992

UCB 1 -339,498 0.682 0.996

FlexGittins 1 -529,851 0.565 0.993

FlexGittins+D 2 -400,671 0.626 0.994

UCB+D 2 -288,162 0.700 0.996

Note: Estimation uses data between 2005 and 2015 from NYSGRC, one of the four large labs in
the data. The number of trials actually allocated was 139,276. The number of trials in the choice
sets after random sampling is 23,883,552. The rest of the notes of Table 2 apply.

27

Table D4: Out-of-sample fit of UCB+D model

Avg P̂(ao
i jt = 1;θ̂θθ l) Avg P̂(ao

i jt = 0;θ̂θθ l)

Lab Sample Avg Log likelihood actual allocations actual nonallocations

JCSG in -0.033 0.909 0.994

out -0.036 0.914 0.996

MCSG in -0.004 0.826 0.999

out -0.004 0.871 0.999

NESG in -0.004 0.817 0.999

out -0.003 0.850 0.999

NYSGRC in -0.013 0.656 0.996

out -0.011 0.734 0.997

Note: To compute these results, I first estimate the UCB+D model using only observed allocation
decisions in odd years. I then compute the in-sample results using the estimates and the odd years’
decisions which I used to fit the model. I compute the out-of-sample results using even years’
decisions. The rest of the notes of Table 2 apply.

28

Ta
bl

e
D

5:
E

st
im

at
es

of
pa

ra
m

et
er

s
in

di
ff

er
en

tm
od

el
s,

N
E

SG

U
C

B
+D

St
at

ic
G

itt
in

s
U

C
B

Fl
ex

G
itt

in
s

Fl
ex

G
itt

in
s+

D
(1

)
(2

)
(3

)
(4

)
(5

)
(6

)
(7

)
(8

)
20

05
–2

00
8

20
09

–2
01

5
20

05
–2

00
8

20
09

–2
01

5
20

05
–2

00
8

20
09

–2
01

5
20

05
–2

00
8

20
09

–2
01

5
20

05
–2

00
8

20
09

–2
01

5
20

05
–2

00
8

20
09

–2
01

5

θ
B

1
15

8.
3

11
9.

5
–

–
–

–
21

0.
5

18
8.

8
1.

6
1.

4
1.

4
0.

8
[1

56
.4

,1
60

.1
]

[1
18

.1
,1

21
.4

]
[2

08
.8

,2
12

.5
]

[1
88

.5
,1

89
.2

]
[1

.6
,1

.6
]

[1
.4

,1
.4

]
[1

.4
,1

.4
]

[0
.8

,0
.8

]
θ

B
2

-2
.3

-4
.7

–
–

–
–

–
–

–
–

-6
.5

-8
.4

[-
2.

3,
-2

.2
]

[-
4.

7,
-4

.7
]

[-
6.

4,
-6

.6
]

[-
8.

4,
-8

.4
]

θ
qu

an
t

10
5.

6
95

.9
28

8.
9

23
2.

6
16

7.
5

16
2.

3
10

6.
1

14
6.

1
15

0.
0

14
9.

5
13

8.
4

14
3.

5
[1

05
.5

,1
05

.8
]

[9
5.

8,
95

.9
]

[2
86

.3
,2

91
.4

]
[2

32
.4

,2
32

.9
]

[1
67

.1
,1

67
.8

]
[1

62
.1

,1
62

.5
]

[1
06

.0
,1

06
.3

]
[1

46
.1

,1
46

.2
]

[1
49

.3
,1

51
.0

]
[1

49
.4

,1
49

.8
]

[1
37

.9
,1

39
.1

]
[1

43
.3

,1
43

.7
]

θ
no

ve
l

28
.4

-2
3.

3
20

2.
6

20
.7

67
.6

-8
.5

28
.7

-3
9.

8
48

.4
-1

4.
4

38
.7

-7
.7

[2
7.

8,
28

.9
]

[-
23

.4
,-2

3.
1]

[2
00

.5
,2

04
.3

]
[2

0.
5,

20
.8

]
[6

7.
3,

67
.8

]
[-

8.
6,

-8
.4

]
[2

8.
6,

28
.9

]
[-

39
.8

,-3
9.

8]
[4

7.
9,

49
.1

]
[-

14
.5

,-1
4.

3]
[3

8.
1,

39
.4

]
[-

7.
7,

-7
.7

]
θ

pr
ev

St
ru

ct
Z

18
.1

20
.1

9.
8

56
.5

3.
8

7.
9

22
.3

47
.6

3.
0

5.
2

-0
.4

4.
9

[1
7.

6,
18

.6
]

[2
0.

1,
20

.3
]

[9
.4

,1
0.

0]
[5

6.
4,

56
.6

]
[3

.8
,3

.9
]

[7
.8

,8
.0

]
[2

2.
1,

22
.5

]
[4

7.
5,

47
.7

]
[2

.7
,3

.2
]

[5
.1

,5
.2

]
[-

0.
7,

-0
.1

]
[4

.8
,5

.0
]

θ
bi

om
ed

21
.5

52
.9

45
.3

15
8.

5
7.

3
44

.1
21

.5
10

2.
5

8.
0

38
.0

3.
4

29
.3

[2
1.

3,
21

.7
]

[5
2.

7,
52

.9
]

[4
3.

1,
47

.0
]

[1
58

.3
,1

58
.8

]
[7

.1
,7

.5
]

[4
4.

0,
44

.2
]

[2
1.

4,
21

.7
]

[1
02

.4
,1

02
.5

]
[7

.8
,8

.3
]

[3
7.

8,
38

.4
]

[2
.8

,3
.9

]
[2

9.
1,

29
.3

]
θ

pr
ev

P
ub

Z
-9

.2
-3

.0
-1

4.
5

-1
.7

-6
.9

-0
.5

-9
.4

-6
.8

-6
.9

-4
.5

-3
.8

-3
.1

[-
9.

3,
-9

.0
]

[-
3.

1,
-3

.0
]

[-
14

.7
,-

14
.2

]
[-

1.
7,

-1
.7

]
[-

7.
0,

-6
.8

]
[-

0.
5,

-0
.4

]
[-

9.
6,

-9
.2

]
[-

6.
8,

-6
.7

]
[-

7.
2,

-6
.7

]
[-

4.
5,

-4
.4

]
[-

3.
9,

-3
.6

]
[-

3.
1,

-3
.1

]
θ

hu
m

an
67

.1
12

4.
0

10
5.

9
19

1.
0

51
.4

90
.5

69
.8

16
0.

6
40

.2
83

.0
36

.3
74

.5
[6

6.
9,

67
.3

]
[1

23
.9

,1
24

.0
]

[1
04

.8
,1

06
.9

]
[1

90
.7

,1
91

.3
]

[5
1.

2,
51

.6
]

[9
0.

4,
90

.6
]

[6
9.

7,
70

.0
]

[1
60

.6
,1

60
.7

]
[4

0.
1,

40
.5

]
[8

2.
9,

83
.1

]
[3

6.
0,

36
.7

]
[7

4.
5,

74
.6

]
θ

eu
ka

ry
ot

e
-2

9.
8

-3
5.

9
67

.7
61

.6
-8

.3
-2

6.
9

-3
0.

0
-0

.3
-1

4.
3

-3
3.

7
-1

1.
7

-3
3.

4
[-

29
.9

,-
29

.7
]

[-
36

.0
,-3

5.
8]

[6
7.

1,
69

.1
]

[6
1.

5,
61

.8
]

[-
8.

7,
-8

.0
]

[-
27

.0
,-2

6.
8]

[-
30

.4
,-

29
.8

]
[-

0.
3,

-0
.2

]
[-

14
.4

,-1
3.

9]
[-

33
.7

,-3
3.

6]
[-

12
.0

,-1
1.

6]
[-

33
.4

,-3
3.

4]
θ

m
em

br
an

e
58

.3
13

.1
96

.5
52

.3
35

.2
28

.4
58

.1
22

.7
31

.2
24

.8
23

.5
22

.1
[5

8.
0,

58
.6

]
[1

3.
1,

13
.3

]
[9

6.
1,

97
.2

]
[5

2.
1,

52
.4

]
[3

5.
1,

35
.4

]
[2

8.
3,

28
.5

]
[5

7.
9,

58
.5

]
[2

2.
7,

22
.8

]
[3

1.
1,

31
.4

]
[2

4.
8,

24
.9

]
[2

3.
1,

23
.9

]
[2

2.
1,

22
.2

]

N
ot

e:
Ta

bl
e

di
sp

la
ys

th
e

fu
ll

es
tim

at
es

of
pa

ra
m

et
er

s
in

di
ff

er
en

tm
od

el
s

fo
r

N
E

SG
,o

ne
of

th
e

fo
ur

la
rg

e
la

bs
.

R
es

ul
ts

fr
om

ot
he

r
la

bs
ar

e
av

ai
la

bl
e

up
on

re
qu

es
t.

pr
ev

St
ru

ct
Z i

y
re

pr
es

en
ts

th
e

nu
m

be
r

of
st

an
da

rd
de

vi
at

io
ns

by
w

hi
ch

pr
ev

St
ru

ct
iy

di
ff

er
s

fr
om

th
e

ye
ar

ly
m

ea
n

pr
ev

St
ru

ct
y.

pr
ev

P
ub

Z i
y

re
pr

es
en

ts
th

e
nu

m
be

ro
fs

ta
nd

ar
d

de
vi

at
io

ns
by

w
hi

ch
pr

ev
P

ub
iy

di
ff

er
s

fr
om

th
e

ye
ar

ly
m

ea
n

pr
ev

P
ub

y.
T

he
re

st
of

th
e

no
te

s
of

Ta
bl

e
3

ap
pl

y.

29

Ta
bl

e
D

6:
E

st
im

at
es

of
m

ai
n

pa
ra

m
et

er
s

of
in

te
re

st
in

U
C

B
+D

m
od

el
,o

th
er

la
bs

JC
SG

M
C

SG
N

Y
SG

R
C

20
05

–2
00

8
20

09
–2

01
5

20
05

–2
00

8
20

09
–2

01
5

20
05

–2
00

8
20

09
–2

01
5

Pa
ra

m
et

er
(1

)
(2

)
(3

)
(4

)
(5

)
(6

)

θ
B

1
55

8.
2

10
01

.9
27

3.
3

12
7.

1
61

.6
11

5.
6

[5
51

.1
,5

73
.4

]
[9

77
.6

,1
02

8.
0]

[2
66

.2
,2

84
.8

]
[1

26
.3

,1
27

.8
]

[6
1.

2,
61

.9
]

[1
14

.2
,1

16
.9

]

θ
B

2
-2

47
.9

-1
04

.7
-3

.9
-3

.8
-2

.9
-3

.9
[-

24
7.

6,
-2

48
.5

]
[-

10
2.

9,
-1

06
.6

]
[-

3.
9,

-3
.9

]
[-

3.
8,

-3
.8

]
[-

2.
9,

-3
.0

]
[-

3.
9,

-3
.9

]

θ
bi

om
ed

-3
4.

3
10

5.
1

12
.7

84
.8

33
.0

89
.4

[-
34

.6
,-3

4.
1]

[1
04

.7
,1

05
.8

]
[1

2.
6,

12
.7

]
[8

4.
8,

84
.8

]
[3

2.
9,

33
.1

]
[8

9.
1,

89
.8

]

N
ot

e:
Ta

bl
e

di
sp

la
ys

th
e

es
tim

at
es

of
th

e
m

ai
n

pa
ra

m
et

er
s

of
in

te
re

st
in

th
e

U
C

B
+D

m
od

el
fo

rt
he

ot
he

rt
hr

ee
la

rg
e

la
bs

.F
ul

le
st

im
at

es
of

pa
ra

m
et

er
s

in
di

ff
er

en
t

m
od

el
s

ar
e

av
ai

la
bl

e
up

on
re

qu
es

t.
95

%
co

nfi
de

nc
e

in
te

rv
al

s
ar

e
co

m
pu

te
d

us
in

g
th

e
M

C
M

C
ap

pr
oa

ch
in

C
he

rn
oz

hu
ko

v
&

H
on

g
(2

00
3)

an
d

ar
e

sh
ow

n
in

br
ac

ke
ts

.
T

he
se

co
nfi

de
nc

e
in

te
rv

al
s

ar
e

al
m

os
t

id
en

tic
al

to
th

os
e

co
m

pu
te

d
us

in
g

Pr
oc

ed
ur

e
1

of
C

he
n

et
al

.(
20

18
).

30

Table D7: Simulated outcomes of UCB+D model, other labs

Projects Unique
Lab Model attempted publications Citations Downloads (millions)

JCSG UCB+D 40,881 1,607 1,495 38.4

Actual 40,881 1,512 1,463 36.3†

MCSG UCB+D 77,503 2,040 2,524 46.3

Actual 78,740 2,276 3,145 50.0†

NYSGRC∗ UCB+D 59,734 626 2,579 14.7

Actual 59,734 617 2,575 14.4†

Note: Each simulation uses θ̂θθ l from parameter estimates of the corresponding model. Results
are averaged from three simulations of each model. †The download data on actually published
projects are between 2007 and 2013, so actual five-year downloads may not be available for some
projects. I predict five-year downloads for the actually published projects using the predictive
model described in Appendix B.3. ∗I note data problems related to NYSGRC. For this particular
lab, more than half of the trials that produced structures either miss key stage dates or have those
dates in wrong orders (for example, publication is at an earlier date than previous stages). As
a result, I am not able to correctly simulate the dates and outcomes of different stages of trials.
Though this set of simulation results looks quite nice, please take them with a grain of salt.

31

Table D8: Out-of-sample simulation results for UCB+D model

Projects Unique
Lab Model attempted publications Citations Downloads (millions)

JCSG in 40,881 1,607 1,495 38.4

out 40,881 1,621 1,481 38.6

actual 40,881 1,512 1,463 36.3†

MCSG in 77,503 2,040 2,524 46.3

out 77,504 2,051 2,553 46.4

actual 78,740 2,276 3,145 50.0†

NESG in 59,947 1,097 3,376 25.6

out 59,913 1,085 3,336 25.3

actual 59,953 1,053 3,502 24.5†

NYSGRC∗ in 59,734 626 2,579 14.7

out 59,734 628 2,594 14.7

actual 59,734 617 2,575 14.4†

Note: In-sample simulation results are identical to those for the UCB+D model in Tables 4 and D7.
I simulate the out-of-sample results as follows. I first fit the UCB+D model for each lab with odd
years of observed decisions. Using those estimated parameters, I simulate each lab’s full input
allocation history and output, in odd and even years. The rest of the notes of Table D7 apply.

32

Table D9: Counterfactual outcomes, no exploration, other labs

Lab Counterfactual model Projects attempted Unique publications Citations Downloads (millions)

JCSG Static 10,710 1,338 1,270 32.4

(-74%) (−17%) (−15%) (−16%)

Baseline model 40,881 1,607 1,495 38.4

MCSG Static 14,883 668 856 15.6

(-81%) (−67%) (−66%) (−66%)

Baseline model 77,503 2,040 2,524 46.3

NYSGRC∗ Static 5,203 247 1,026 5.9

(-91%) (−61%) (−60%) (−60%)

Baseline model 59,734 626 2,579 14.7

Note: Each simulation uses θ̂θθ Xl from parameter estimates of the UCB+D model for the correspond-
ing lab. These estimates are available upon request. Results are averaged from three simulations
of the model. Output from the baseline model are identical to those for the UCB+D model in
Appendix Table D7. Parentheses show percentage differences as compared to the baseline model.
Table shows results from the three other large labs. See Table 5 for results from NESG. ∗I note data
problems related to NYSGRC. For this particular lab, more than half of the trials that produced
structures either miss key stage dates or have those dates in wrong orders (for example, publication
is at an earlier date than previous stages). As a result, I am not able to correctly simulate the dates
and outcomes of different stages of trials. Though this set of simulation results looks quite nice,
please take them with a grain of salt.

33

