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Balancing exploitation and exploration in resource allocation under uncertainty is a classic theoretical

problem. Yet little research has empirically studied how organizations navigate the exploitation-exploration

tradeoff in complex real-world situations. To address this gap, this paper introduces a novel setting of struc-

tural biology labs, featuring high-frequency, publicly available data on nearly one million discrete experimen-

tal trials allocated across 300,000+ research projects from 2000-2015. We model this setting as a stochastic

bandit and develop a dynamic structural estimation approach to infer the allocation decision policies that

best characterize lab behavior. We find the labs’ decision models strongly resemble a simple Upper Confi-

dence Bound (UCB) algorithm, which achieves superior in-sample fit (51–84% of the log-likelihood of the

next-best model among the ones we tested with minimal additional parameters) and strong out-of-sample

predictive accuracy (73–87% allocation probability for actually allocated trials versus 0.1–0.8% for unal-

located ones). Through counterfactual simulations, we demonstrate how to leverage our policy inference

results to incrementally evaluate and improve allocation decision making. For example, switching to a readily

implementable alternative algorithm could have increased cumulative rewards by up to 28%, while earlier

adoption of structured decision-making during these labs’ initial pilot phases could have yielded further

performance gains, though results vary significantly across labs due to organizational heterogeneity.

Key words : explore-exploit tradeoff, stochastic bandit, resource allocation, policy inference, innovation

1. Introduction

Organizations frequently encounter a fundamental dilemma between exploring new opportunities

and exploiting existing knowledge. This tradeoff, formalized by seminal works such as March (1991),

represents a central challenge in organizational learning and resource allocation. While theoretical

foundations of the exploration–exploitation dilemma—often modeled as a bandit problem—have

been extensively studied since Thompson (1933) and Gittins (1979), empirical evidence on how

decision-makers actually navigate this tradeoff in complex real-world environments remains limited.

This is largely due to challenges in obtaining sufficiently granular data and computational difficulty

of modeling dynamic decision processes with large action spaces.
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This paper addresses these empirical and methodological gaps. We introduce a novel empirical

setting with rich, high-frequency, publicly available data on resource allocation decisions within

organizations, and develop a dynamic structural estimation approach to infer allocation decision

policies employed by decision-makers. Why is policy inference valuable when the literature has

largely focused on designing optimal allocation algorithms (see Lattimore and Szepesvári (2020) for

a comprehensive overview)? In practice, organizational decision-making is often shaped by insti-

tutional constraints, behavioral frictions, and political considerations that limit the feasibility of

wholesale policy changes. Moreover, real-world allocation problems frequently involve complexities

that make deriving theoretically optimal policies either highly challenging or outright infeasible.

Policy inference enables us to benchmark current behavior and evaluate the marginal benefits

of small, targeted policy changes without relying on an optimal benchmark, thereby providing

evidence-based recommendations that are more likely to be adopted in practice.

Our empirical setting involves large, publicly funded structural biology labs participating in the

Protein Structure Initiative (PSI), a $1.3 billion grant program managed by the National Insti-

tutes of Health (NIH) from 2000 to 2015. The core task of these labs—allocating experimental

trials to protein structure determination projects—elegantly maps onto a stochastic bandit frame-

work. Each protein molecule represents a distinct project (arm), labs allocate resources through

discrete experimental trials (arm pulls), and outcomes are highly uncertain (98% failure rate). PSI

labs conducted nearly one million experimental trials across more than 300,000 protein structure

determination projects, with allocation decisions observed daily. This provides an ideal empirical

context with rich data for evaluating organizational decision-making in a bandit framework.

We develop a likelihood-based policy inference framework within a stochastic bandit setting to

identify policy classes that best explain observed allocation decisions. Unlike most bandit literature,

which aims to design optimal algorithms, our goal is to infer decision-making policies from behav-

ior without assuming optimality. This approach, commonly referred to as structural estimation,

assumes an overarching and invariant structure for a decision problem, then estimates parame-

ters within that structure using data. Its key strength lies in enabling counterfactual analysis,
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though its validity depends on the correctness of the assumed structure. In our case, the structure

is a stochastic bandit—a natural fit for creative, sequential decision-making processes involving

exploration-exploitation trade-offs. We also confirmed with lab managers that their decision-making

processes broadly conform to the bandit structure.

We enhance model realism by incorporating institutional knowledge, since standard bandit struc-

tures remain relatively simple compared to real-world decision environments. For example, rather

than assuming independent projects, we allow project outcomes to depend on a high-dimensional

set of molecular properties, generating correlated rewards and learning spillovers among similar

projects. While these enhancements increase empirical relevance, they also render the model analyt-

ically intractable and make estimation more challenging. Classic dynamic structural methods (e.g.,

Pakes 1986, Rust 1987, Hotz and Miller 1993) are infeasible here due to the curse of dimensionality.

Our likelihood-based framework addresses the estimation challenge by decomposing the inference

problem into three components: (1) recovering the reward function that captures organizational

preferences (e.g., research quantity versus impact), (2) identifying the belief-updating model that

characterizes how decision-makers learn about reward distributions from past outcomes, and (3)

inferring the decision policy that maps beliefs and preferences to allocation decisions. Leveraging

detailed institutional knowledge, we estimate belief-updating processes offline, enabling efficient

estimation of reward functions and allocation policies from observed behavior. Our approach shares

high-level similarities with concurrent work by Ano and Martinez-de Albeniz (2023), though our

empirical setting and inference procedure differ.

Empirically, we find that resource allocation in these labs is best described by exploration-

oriented models. Specifically, a variant of the UCB algorithm—UCB1 with time-discounted explo-

ration bonuses—consistently outperforms other specifications, including Greedy, Gittins Index,

Thompson Sampling, and Explore-Then-Commit, across all labs. This model achieves superior

in-sample fit (51–84% of the log-likelihood of the next-best model with minimal additional param-

eters) and strong out-of-sample predictive accuracy (73–87% allocation probability for actually
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allocated trials versus 0.1–0.8% for unallocated ones). The estimated parameters align with insti-

tutional context: labs placed positive weight on exploration, favored more recent projects, and

responded to NIH directives emphasizing biomedical importance.

Through counterfactual simulations, we evaluate how alternative policies might have performed.

For one major lab, adopting an Explore-Then-Commit algorithm could have improved cumulative

rewards by up to 28%. In other cases, the inferred policies already performed the best among the

readily adoptable policies we tested. Across all labs, Greedy policies consistently underperformed,

reaffirming the value of structured exploration. We further show that earlier adoption of structured

decision-making during the PSI’s initial pilot phase could have yielded additional performance

gains. Finally, we find that if labs possess perfect information about each project’s reward distri-

bution, cumulative rewards could nearly double across labs—highlighting the value of high-quality

historical data.

We conclude by discussing limitations and opportunities for future work. Among these, we do

not model the upstream project nomination process that shapes the set of alternatives (or “arms”)

available to decision-makers—an important but distinct component of organizational resource allo-

cation. Moreover, we cannot fully explain why certain algorithms outperform others in specific

labs, given the limited number of labs observed. Nonetheless, we see this study as a foundation for

a broader empirical agenda on how organizations learn and allocate resources under uncertainty.

The remainder of the paper is organized as follows. Section 2 develops the theoretical framework

for policy inference in stochastic bandit settings. Section 3 introduces the empirical setting of struc-

tural biology labs, and Section 4 maps their resource allocation problem to the bandit framework.

Section 5 details the likelihood-based inference procedure. Section 6 presents the policy inference

results, showing that lab decisions are best explained by an exploration-based model with a time-

discounted exploration bonus. Section 7 uses the inferred policy to counterfactually evaluate the

impact of incremental improvements in allocation. Section 8 concludes with limitations and future

directions.
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2. Policy Inference Framework for Stochastic Bandits
2.1. Bandit Problem Setup

Drawing on the canonical stochastic bandit framework in Lattimore and Szepesvári (2020), we

develop a theoretical framework for policy inference that underpins our empirical analysis of

exploitation-exploration decisions in organizational resource allocation.

In this framework, resource allocation is modeled as a sequential game between the decision-

maker and the stochastic environment over a horizon of T periods. In each period t∈ {1,2, ..., T},

the environment first reveals a context ct ∈ C, representing observable features relevant to the

decision at time t. The decision-maker then selects an action at (or “pulls an arm”) from a finite

set of available actions At. Crucially, the decision-maker cannot foresee future outcomes and must

select at based solely on the observed context ct and the history up to period t − 1, denoted

Ht−1 = (c1, a1, x1, . . . , ct−1, at−1, xt−1). A policy π governs this decision process by mapping the

current context and history to a probability distribution over actions, such that under policy π,

the conditional distribution of action at given Ht−1 and ct is πt(· |Ht−1, ct). The environment then

generates a reward xt ∈ R sampled from the conditional probability distribution Pat(· | Ht−1, ct)

and reveals xt to the decision-maker.

The decision-maker’s objective is to maximize the cumulative reward
∑T

t=1 xt across the time

horizon. Achieving this requires adopting a policy that effectively learns from past outcomes and

balances the trade-off between exploiting known high-reward arms and exploring uncertain alterna-

tives. The environment generates rewards according to the history, context, and action, providing

feedback that enables the policy to adapt and improve decision-making over time.

This stochastic contextual bandit formulation nests the standard stochastic multi-armed bandit

as a special case when the context ct is fixed or uninformative, and maps onto many real-world

organizational decision problems. In product development contexts analyzed by Ano and Martinez-

de Albeniz (2023), for example, managers balance launching products in well-understood categories

(exploitation) versus testing novel categories with uncertain potential (exploration). Similarly, in

our empirical setting, labs allocate experimental trials across molecular targets, facing analogous

trade-offs.
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2.2. Research Focus: Policy Inference

Unlike the traditional bandit literature, which focuses on designing optimal algorithms for various

reward distributions and arm-pulling scenarios, our research centers on policy inference—recovering

the underlying decision policy from observed actions and outcomes. This requires identifying how

decision-makers use contextual information and historical data to learn about the environment and

reward distributions, as well as determining both the policy class (e.g., UCB, Thompson Sampling)

and its parameters (e.g., exploration rates) that are employed.

Our approach draws on the extensive structural estimation literature (see Hortaçsu and Joo

(2023) for an overview), which posits an overarching, invariant structure for a decision problem.

Within such a structure, one can hypothesize alternative behavioral models, estimate their param-

eters from data, and assess their fit and explanatory power. A major strength of this approach is its

capacity for counterfactual analysis (e.g., evaluating how outcomes would change under different

behavioral models) though its validity hinges on the correctness of the assumed structure.

In our setting, the assumed structure is a stochastic bandit, a natural choice for creative, sequen-

tial decision-making processes involving exploration–exploitation trade-offs. Discussions with lab

managers confirmed that their decision processes align with this structure. Within it, we spec-

ify and test a range of behavioral models for allocation, from established bandit algorithms to

reduced-form specifications that capture decision patterns in a theory-free manner.

The central assumption enabling policy inference here is revealed preference: decision-makers

reveal what they value through their choices—a foundational concept in decision theory (see Varian

et al. (2006) for an overview). At a high level, we infer the extent to which labs valued exploration

by observing how often they allocated trials to projects with no clear immediate benefit—for

example, those with uncertain success probabilities or unrelated to stated NIH priorities. This

inferred value reflects revealed preferences, which need not correspond to optimal behavior. To our

knowledge, the only other paper to study policy inference in a bandit setting is Ano and Martinez-

de Albeniz (2023), which shares methodological similarities with our approach but differs in the

model assumptions enabling parameter identification.
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Policy inference is related to—but distinct from—inverse reinforcement learning (IRL). IRL typ-

ically assumes optimal behavior in a given setting and aims to recover the reward function that

would make the observed actions optimal (Ng et al. 2000). In contrast, policy inference makes no

assumption of optimality (Chan et al. 2022). Instead, it seeks the policy most likely to have gener-

ated the observed action-reward sequences (similar to Hüyük et al. (2021)), whether or not that pol-

icy is optimal, near-optimal, or flawed. This distinction is crucial in organizational settings, where

decisions often rely on intuition, heuristics, or qualitative rules rather than formal optimization.

Moreover, real-world resource allocation problems are usually too complex for analytically optimal

solutions. By inferring and analyzing the actual policies implemented, we can reveal behavioral

and institutional influences shaping decisions and identify opportunities to improve organizational

processes—either by proposing alternative policies or redesigning the decision environment.

To avoid confusion, we distinguish policy inference from several related concepts in the bandit

literature. Inference typically refers to estimating the true mean rewards of arms from collected

data. This is challenging in bandit settings because arms are adaptively selected, producing non-

i.i.d. reward data. As a result, sample averaging—common in bandit algorithms—can be biased

and statistically unreliable (Dimakopoulou et al. 2021, Kalvit and Zeevi 2021, Simchi-Levi and

Wang 2023). Policy evaluation builds on accurate inference and involves estimating the expected

cumulative (or average) reward of a known policy. Off-policy evaluation, in particular, aims to

evaluate a counterfactual policy using data generated by a different policy. Policy learning, which

relies on reliable evaluation, focuses on optimizing policies to improve decision-making over time

(Kallus et al. 2022). Later in the paper, we demonstrate how our policy inference results support

simulation-based off-policy evaluation and improvement.

2.3. Decomposing the Empirical Challenges for Policy Inference

Inferring the decision policy in a bandit setting involves disentangling three fundamental compo-

nents:

1. Reward function form, xt: This captures the decision-maker’s preferences, which may

involve multiple objectives. For example, a revenue-focused firm might set xt equal to period
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revenue, whereas a product development firm could optimize a weighted combination of revenue

and market share. Similarly, research labs often balance scientific impact, publication volume, and

funding requirements, leading to a more complex reward function. Additionally, xt may depend on

the context ct, reflecting how outcomes vary with external conditions or task features.

2. Learning model, P̂t: This represents how the decision-maker’s beliefs about the reward

distribution evolve as they observe new rewards obtained from arm pulls. It is important to distin-

guish P̂t from Pt, the true (but unknown) reward-generating process for each arm determined by

the environment; policy inference requires only understanding how decision-makers perceive and

update their beliefs about rewards, rather than the actual reward dynamics.

3. Decision policy form, π: This defines how the decision-maker translates beliefs and pref-

erences into action choices. It includes the policy class (e.g., UCB, Thompson Sampling) and

parameters (such as exploration rates). Crucially, the policy is not assumed to be optimal.

To illustrate how these three components form a decision policy, consider an agent employing the

widely used UCB1 algorithm (Auer et al. 2002) for arm selection. The agent first needs to specify

the reward function for each arm. For example, imagine a firm deciding which product category

(arm) to select for launching a new product (pull), with interest in both revenue and market share.

The reward function for each potential product could be expressed as xi = 0.5× revenuei +0.5×

market sharei. The firm then forms beliefs about the reward distribution based on past outcomes.

Specifically, the UCB1 algorithm requires estimating the expected reward using the empirical mean

reward x̂i(t− 1) from previously launched products in that category. The UCB1 algorithm then

maps these preferences and beliefs into a decision rule by computing a confidence-adjusted index

value for each arm i at each decision point t:

Vit =

{
∞ if Ji(t− 1) = 0,

x̂i(t− 1)+
√

2 ln(Nt)

Ji(t−1)
otherwise,

(1)

where Ji(t− 1) is the number of times arm i has been pulled up to period t− 1, and Nt is the

total number of pulls across all arms up to that point. The algorithm then selects the arm with

the highest index value in each period.
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Inferring decision policy components in a bandit setting requires highly granular sequential data.

At minimum, we need:

• The contexts relevant to the action choice in each period, (c1, c2, ..., cT )

• The actual actions taken in each period (a1, a2, ..., aT )

• The set of available actions to choose from in each period (A1,A2, ...,AT )

• The realized outcomes contributing to rewards (x1, x2, . . . , xT ), potentially reflecting multiple

objectives

However, sequential choice data alone does not permit separate identification of the three key

components without additional institutional knowledge. To see this, consider again a product

development firm selecting new products: if we observe seemingly random revenue patterns across

products even in later periods, multiple interpretations are possible. The decision-maker might:

(1) have objectives beyond revenue maximization (affecting the reward function); (2) employ an

ineffective learning model that fails to predict promising projects based on past outcomes (affect-

ing the learning mechanism); or (3) mistakenly maintain high exploration rates (affecting policy

parameters). In such cases, the reward function, learning mechanism, and policy parameters are

not separately identified from observational data alone. If, however, institutional knowledge con-

firms that the firm prioritizes revenue maximization exclusively, and choice patterns show resources

being allocated toward well-tested product categories, we can infer that their learning model is sub-

optimal. This illustrates how domain-specific knowledge provides crucial identification constraints

for policy inference.

In this paper, we leverage institutional knowledge about decision-makers’ belief updating pro-

cesses, enabling us to separately model their learning mechanism with reasonable fidelity. While

we cannot directly observe agents’ precise trade-offs between competing objectives, we know which

variables they considered important. This allows us to specify the reward function as a linear

combination of these variables with unknown weights. We therefore estimate the learning model

offline, then use the estimated learning model and choice data to jointly estimate both the reward
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function weights and policy parameters. This approach differs from Ano and Martinez-de Albeniz

(2023), who assumed the firm has a singular revenue maximization objective but lacked institu-

tional detail on belief updating. They instead jointly estimated the learning model and decision

policy parameters using choice data.

A remaining question is how to evaluate whether our inferred policy accurately captures the

actual decision-making process. We employ two complementary assessment criteria: (1) in-sample

fit, measured by the likelihood of observed actions under the inferred policy parameters, and

(2) out-of-sample predictive performance, where we estimate policies using only an initial period

of observed history and then evaluate the model’s ability to predict allocation decisions beyond

the estimation period. Together, these measures provide evidence of both the inferred policy’s

explanatory power and generalizability beyond the estimation sample.

3. Empirical Setting

Our empirical analysis examines decision-making processes within major structural biology labs

funded through the Protein Structure Initiative (PSI)—a large-scale scientific program that oper-

ated from 2000 to 2015 with $1.3 billion in NIH funding.

3.1. Scientific Background: Structural Biology

Structural biology is the field devoted to determining the three-dimensional structures of protein

molecules (see Figure 1 for an example). Proteins are long amino acid chains that fold into shapes

enabling specific functions—much like a key fitting into a lock. These structures serve as blueprints

for drug design, driving innovations from targeted cancer therapeutics (Van Montfort andWorkman

2017) to COVID-19 vaccines (Wrapp et al. 2020), and have earned the field over a dozen Nobel

Prizes (Hill and Stein 2025).

The work within a structural biology lab constitutes a dynamic sequential decision process

that closely resembles a classical bandit problem. At each point in time, the lab has an array of

proteins to choose from, with each candidate protein representing an “arm” that can be pulled.

The lab maintains beliefs about each protein’s probability of success and potential reward if suc-

cessful. Resources are allocated to projects in discrete, countable units—individual experimental
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trials—which map naturally to arm pulls in a bandit. The lab chooses which arms to pull, observes

the results, updates its beliefs, and repeats the process.

Figure 1 Protein molecule (arm) and experimental trial (pull) in structural biology research

Note: Structure determined by Northeast Structural Genomics Consortium (NESG) (Kaustov et al. 2007).

Each experimental trial represents an independent Bernoulli process with binary outcomes: suc-

cess or failure. Conducting a trial involves multiple sequential steps, much like baking a cake, where

failure at any stage requires starting the entire process over. However, unlike baking—where master-

ing a particular step typically ensures consistent success at that step in future attempts—structural

biology trials are highly unpredictable endeavors that do not reliably build upon previous progress.

Even if one trial nearly succeeds but fails in the final procedure, the subsequent trial on the identi-

cal protein might fail at the very first step. As noted by Chruszcz et al. (2008), “the success of any

or all individual steps does not guarantee the success of the overall process... requires a significant

amount of work and much luck.” This inherent uncertainty is reflected in the dataset examined,

where 98% of trials failed to produce any structure.

Multiple trials on the same project can be conducted either in parallel or sequentially. The first

successful trial for a project yields a reward—a multi-dimensional benefit to the lab and society,

including relevance to disease therapies, understanding of human biology, and publication and

citation potential. Failed trials produce no immediate reward, and subsequent successes after the

first yield no additional reward since duplicate structures contribute little new scientific value.

The true probability of success (p) for any trial can be influenced by several factors: previous

trials with the same molecule, previous trials on similar molecules sharing key molecular properties,



Zhuo: Exploitation vs. Exploration in Research Labs
12

and inherent characteristics of the molecule itself (for example, shorter molecules are typically

easier to analyze than longer ones). Previous trials can increase the true success probability (p) if

scientists gained technical expertise from earlier attempts. Previous trial outcomes from the same

or similar molecules may also help labs learn and refine their beliefs (p̂) about success probabilities,

bringing p̂ closer to p and narrowing its confidence intervals.

This creates the classic exploration-exploitation tradeoff that defines bandit problems: allocating

trials to less-tested projects helps researchers learn about their success probabilities (and those of

similar projects sharing key characteristics), but diverts resources from projects already known to

have high success rates.1

3.2. Institutional Background: Protein Structure Initiative (PSI)

The PSI was a major NIH program operating from 2000 to 2015, comprising four large labs

and numerous smaller ones with substantial variation in scale. Unlike investigator-initiated R01

grants awarded competitively to individual labs, the PSI operated under U01 cooperative agree-

ments. These NIH-initiated agreements promoted structured collaboration and sustained interac-

tion between the agency and researchers, fostering information sharing and expanding research

into molecules that traditional R01-funded labs might have lacked incentives to pursue. PSI labs

were required to collect detailed data on trial allocation and outcomes across projects, all made

publicly available in real time through the TargetTrack database (Berman et al. 2017) as trials

were allocated and performed.

The PSI evolved through three phases reflecting shifts in NIH priorities. During the Pilot Phase

(2000–2004), the NIH avoided setting production targets, encouraging labs to explore and develop

scalable tools and processes (NIGMS 2008). With hundreds of millions of known protein molecules,

the initial narrowing of projects (i.e., choosing “arms” available for pull) was as important as

1A related but distinct question is whether the labs should have the option to terminate a trial early or adapt
its effort midstream. We assume a trial ended if and only if it failed—i.e., labs did not actively intervene mid-
trial. This is supported by data: 15% of trials list termination reasons, mostly exogenous (e.g., “expression failed,”
“poor diffraction”). Strategic terminations (e.g., “duplicate target found”) were rare, and many such trials actually
continued and succeeded. While mid-trial intervention may be theoretically optimal, modeling such behavior would
require embedding an optimal stopping problem within a dynamic allocation problem, a complexity we leave to future
research.
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deciding which arms to pull. Unfortunately, reasons for initial project inclusion and trial allocations

were often noted as “ad hoc” in TargetTrack during this phase, reflecting inconsistent focus and

unstructured decision-making.

The Production Phase (2005–2008) began when the NIH established annual production targets of

200 structures per large lab (NIGMS 2004). From this phase onward, the NIH implemented regular

performance evaluations2 based on multiple metrics including structure quantity, novelty, biomed-

ical relevance, and specific protein categories (human, eukaryotic3, and membrane proteins4). This

oversight helped mitigate principal-agent problems by aligning lab incentives with stated agency

priorities.

The initial narrowing of projects was also refined during this phase through a separate, upstream

process managed by the NIH5 via three channels: (1) a centralized planning committee periodically

assigned molecules based on bioinformatics; (2) the biomedical research community could nominate

molecules of interest, which the NIH then assigned to labs; and (3) individual labs could propose

their own targets, subject to NIH approval (Berman et al. 2017). Once a project entered a lab’s

choice set, it remained until it succeeded. Occasionally, projects trialed in the early years of the

PSI were revisited much later, indicating no formal abandonment.

Large labs began describing their trial allocation approach as “high-throughput” during this

phase: initially assigning one trial to many projects, then allocating additional trials to those

deemed important or promising based on earlier outcomes. Machine learning methods for predicting

project success probabilities also emerged during this period. The shared TargetTrack database

enabled labs to quickly process large sets of historical trial data as new trials were performed

and outcomes observed, and to use machine learning models trained on historical data to predict

2Archived metrics are available at http://targetdb.pdb.org on the Internet Archive.

3Eukaryotes are organisms whose cells have a nucleus containing DNA organized into chromosomes. This includes
all living organisms except bacteria and archaea.

4Membrane proteins are found in the cell membrane and are particularly challenging for structure determination
due to their physicochemical properties.

5This contrasts with the optimal stopping problem in McCardle et al. (2018), where firms working on the projects
decide whether to abandon existing projects and search for new ones.
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project success probabilities. These practices are thoroughly documented in multiple publications

(Slabinski et al. 2007a,b, Jaroszewski et al. 2008, Price et al. 2009, Babnigg and Joachimiak 2010,

Jahandideh et al. 2014).

By mid-2008, concerns over limited attention to biomedically important projects sparked debate

within the scientific community (Petsko 2007). In response, the Biomedical Phase (2009–2015)

shifted NIH priorities toward biomedically important projects and increased collaboration with

external researchers to help identify and include them in the labs’ choice sets (NIGMS 2009),

while maintaining the same production targets. The structured “high-throughput” decision-making

process based on NIH evaluation metrics and machine learning continued throughout this phase.

3.3. Data and Summary Statistics: Significant Heterogeneity Across Labs

The primary dataset for this paper comes from the TargetTrack database (Berman et al. 2017),

which contains 961,260 unique experimental trials conducted on 335,553 distinct protein molecules

by PSI labs between 2000 and 2015. Our analysis focuses on the four largest labs—Joint Center for

Structural Genomics (JCSG) in California, Midwest Center for Structural Genomics (MCSG) in

Illinois, Northeast Structural Genomics Consortium (NESG) in New Jersey, and New York Struc-

tural Genomics Research Consortium (NYSGRC)—which together accounted for 71% of projects

and 85% of documented trials. For these labs, allocation decisions were recorded daily, including

the start date of each trial and whether it successfully produced a structure. While TargetTrack

includes data from many smaller labs, we focus on these four due to their substantially higher data

quality and completeness.

Table 1 summarizes project, trial, and outcome characteristics for these labs, revealing substan-

tial heterogeneity despite the nominally uniform NIH processes for initial project narrowing and

productivity evaluation. Each lab exhibited distinct patterns: JCSG conducted an especially large

number of total trials and trials per project; MCSG received notably higher funding and more

projects; NESG recorded the lowest success rates at the project level and the fewest structures

determined; and NYSGRC had a few projects with exceptionally high trial counts, many times the
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Table 1 Summary Statistics of Major PSI Labs’ Trial Allocation and Outcomes, 2000–2015

JCSG MCSG NESG NYSGRC*

Total funding (in 2015 dollars, millions) 177 218 170 159

Project-level characteristics
No. of projects (molecules) assigned 40,881 77,200 59,946 59,734
% successful projects 3.7 2.9 1.8 2.2
% projects labeled biomedically important 66.0 25.0 21.3 70.6
% projects labeled novel 93.6 35.1 83.9 80.5
% projects related to human proteins 71.1 44.0 77.9 50.6
% projects related to eukaryotes 59.7 54.2 71.1 56.4
% projects related to membrane proteins 11.8 18.7 25.1 17.1

Trial-level characteristics
No. of trials allocated 378,363 158,727 133,240 149,207
Avg. no. of trials per day 64.8 27.1 22.8 25.5
% successful trials 0.4 1.8 0.9 3.8
Avg. no. of trials per project 9.3 2.1 2.2 2.5
Std. dev. of trials per project 28.4 8.6 3.2 24.6
Min. no. of trials per project 1.0 1.0 1.0 1.0
25th percentile of trials per project 1.0 1.0 1.0 1.0
50th percentile (median) of trials per project 1.0 1.0 1.0 1.0
75th percentile of trials per project 8.0 1.0 2.0 2.0
Max. no. of trials per project 802.0 1,465.0 93.0 5,410.0
% trials on biomedically important projects 71.0 56.8 31.6 74.6
% trials on novel projects 92.4 28.6 76.0 76.2
% trials on human protein projects 73.8 47.2 84.7 69.7
% trials on eukaryotic projects 55.1 54.2 74.6 65.4
% trials on membrane projects 9.4 19.0 26.6 29.4

Outcome-level characteristics
No. of unique structures successfully determined 1,509 2,203 1,063 1,334
% structures biomedically important 67.5 54.2 31.9 48.7
% structures novel 95.5 21.4 80.8 66.0
% structures related to human proteins 65.3 43.5 74.4 49.8
% structures related to eukaryotes 51.1 54.6 63.6 56.1
% structures of membrane proteins 8.9 11.4 16.0 14.7

Note: See Appendix A for variable construction details. The number of successful projects may not equal the number
of successful trials, as multiple successful trials for the same project can yield duplicate structures. *NYSGRC data
should be interpreted cautiously due to chronological inconsistencies. Over half of structure-producing trials have
missing or misordered dates (e.g., structure publication preceding trial allocation). To preserve a complete trial
history, we attempted to correct these by reordering dates to reflect a plausible sequence of events for each trial;
however, the extent of inconsistencies may still limit the reliability of NYSGRC data.

maximum observed elsewhere. Such differences likely reflect operational realities and idiosyncrasies.

For instance, the NIH’s practice of assigning community-nominated projects to geographically

proximate labs to facilitate collaboration could influence the number of projects allocated to each

lab. Likewise, differences in equipment configurations—such as varying access to X-ray crystallog-
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raphy, NMR, and cryo-EM—could shape each lab’s trial capacity.6 These disparities suggest that

each lab faced a distinct resource allocation problem, with differing resource levels, numbers of

arms, and regions of the reward distribution to explore. A one-size-fits-all policy recommendation

is therefore unlikely to be effective.

Notably, across all labs, every project (or molecule) received at least one trial, consistent with

prescriptions from canonical bandit algorithms such as Explore-Then-Commit and UCB1.

In addition to the trial-level outcomes reported in Table 1, TargetTrack records intermediate

outcomes (success or failure) for each procedure within a trial, as well as procedure durations. We

incorporate these data into our analysis; see Appendices B and D for details. We also compiled

hundreds of molecular properties (e.g., molecular weight, water affinity) for PSI projects from

publicly available sources, which we use to model the labs’ learning and belief-updating processes.

These variables are described in Appendix A.

4. Mapping the Empirical Setting Into a Stochastic Bandit Framework

This section elaborates on how structural biology labs’ trial allocation problem maps into the

stochastic bandit framework from Section 2.1. Labs, rather than individual scientists, are treated

as the decision-makers due to limited scientist-level data for some labs. We focus on analyzing

the Production Phase (2005–2008) and Biomedical Phase (2009–2015) of the PSI, excluding the

Pilot Phase (2000–2004) whose ad hoc decision-making lacked sufficient structure for meaningful

analysis. The time horizon T thus spans 2005–2015, discretized daily to match trial records, so

t∈ {2005/01/01,2005/01/02, ...,2015/12/31}.

Projects represent arms, while trials constitute pulls. Subject to daily capacity constraints nt,

labs can allocate multiple trials across different projects, multiple trials to a single project, or any

combination thereof. The set of arms available at time t, denoted as Kt(Ht−1), depends on history

and evolves dynamically as successful projects exit and new projects are identified through the

6Since trials typically followed standardized procedures within each lab, it is reasonable to assume relatively
consistent per-trial costs within labs. Conversations with NIH program officers confirmed that cost-per-trial was
neither recorded nor its variation systematically considered in allocation decisions.
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three NIH mechanisms. The capacity nt is assumed to be exogenous, determined by each lab’s

available scientists and equipment, and is set equal to the observed number of trials allocated each

day. For each arm i ∈Kt(Ht−1), the possible action is ai,t ∈ {0,1,2..., nt} (i.e. allocating up to nt

trials), with total trials respecting the capacity constraint:
∑

i∈Kt(Ht−1)
ai,t = nt. The action space

(set of valid trial allocations) at time t is At = {(a1,t, a2,t, . . . , a|Kt|,t)∈Z
|Kt|
≥0 :

∑
i∈Kt(Ht−1)

ai,t = nt}.

Crucially, labs cannot anticipate future outcomes when allocating trials, so choices at time t (at)

depend solely on the contextual properties of each molecule (ct) and the history of past trials and

rewards (Ht−1). The context ct contains hundreds of factors that can potentially drive a structural

determination project’s probability of success and reward, thereby influencing allocation decisions.

These factors include time-invariant molecular properties (e.g., molecular weight or water affinity)

and time-varying ones (e.g., molecule-specific scientific progress outside the PSI labs that increases

its success probability). Some components of ct may be extracted from the history—for example,

experience from previous trials on a molecule (or similar molecules) may alter its underlying success

probability p, while past trial outcomes may refine labs’ beliefs p̂ about that probability. After

labs allocate their daily trials, nature generates rewards from the conditional distribution Pat(· |

Ht−1, ct). Each trial’s reward is individually observable and reflects multiple NIH evaluation criteria,

including human relevance and disease association.

Let xijt denote the reward from the j-th trial of project i at time t. Each lab’s objective is to

maximize total reward over the T -period horizon by choosing trial allocations:

max
a1∈A1,a2∈A2,...,aT∈AT

T∑
t=1

∑
i∈Kt(Ht−1)

ai,t∑
j=1

xijt (2)

This empirical setting presents several complexities beyond the classic bandit problem, and the

theoretical literature has yet to provide an algorithm that allocates trials optimally under such

conditions. First, our setting is a multiple-play semi-bandit where labs allocate multiple trials

across different projects daily, subject to capacity constraints, with each trial outcome individually

observable. Second, the problem features dynamic arm availability: the set of available projects

Kt(Ht−1) changes as successful projects leave and new ones are introduced, creating expanding
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and sleeping arms. Third, general scientific advances may cause time-dependent changes in success

probabilities independent of history, context, or actions—characteristic of restless bandit problems.

Finally, projects with similar molecular properties exhibit correlated success rates (e.g., shorter

molecules are often easier) and learning spillovers—observing one project’s outcomes informs beliefs

about similar projects—making this a contextual bandit problem.

In the remainder of this section, we specify how we model the three key components of the

decision policy: the reward function, the learning model, and the decision policy form (discussed

in Section 2.3).

4.1. Parameterization of the Reward Function xt

We define pit as the probability of success for a trial of project i on day t—a random variable

determined by the environment (nature) and unknown to the decision-maker (the lab). However, a

trial’s probability of success differs from its probability of payoff : only the first successful trial for a

project yields a reward, while subsequent successes produce duplicate structures with no additional

reward. The payoff probability for trial j of project i at time t, given history Ht−1 and context ct,

is:

qijt(pit |Ht−1, ct) = (1− pit)mi,t(Ht−1)+j−1pit. (3)

where mi,t(Ht−1) counts the number of ongoing trials for project i started before t whose outcomes

are not yet observed. A successful trial j yields a reward only if all mi,t(Ht−1) ongoing trials and all

earlier trials 1,2, ..., j−1 allocated that same day fail. Whenmi,t(Ht−1) = 0, trial j = 1’s probability

of payoff reduces to pit.

We model the reward for trial j of project i at time t as a Bernoulli random variable:

xijt ∼Bernoulli(qijt(pit |Ht−1, ct)), (4)

with

xijt(pit,θθθ |Ht−1, ct) =

{
cit ·θθθ with probability qijt(pit |Ht−1, ct)

0 with probability 1− qijt(pit |Ht−1, ct).
(5)

cit ·θθθ represents the reward the lab receives when a trial pays off, and it is a deterministic function

of project i’s characteristics cit. Given close NIH oversight, we assume that the characteristics cit
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determining lab rewards are the same criteria used by the NIH for productivity evaluation and

remain fixed within each PSI phase. These multiple criteria are assumed to be combined linearly

through a weight vector θθθ, where each weight reflects the lab’s preference for the corresponding

characteristic and is known to the lab (though unknown to us). We therefore specify cit ·θθθ as

cit ·θθθ=1 · θquant +noveli · θnovel + prevStructZit · θprevStructZ + biomedi · θbiomed

+prevPubZit · θprevPubZ +humani · θhuman + eukaryotei · θeukaryote +membranei · θmembrane.
(6)

Whenever a trial pays off, the lab is assumed to receive a baseline reward θquant plus additional

amounts depending on the other characteristics of the project. The weight θnovel is assigned to

projects declared as novel (noveli). Regarding novelty, the NIH also emphasized the high value of

structures from protein families with few or no previously published structures. To capture this

priority, we measure how many structures have been published within each molecule’s protein

family by each given year. The weight θprevStructZ is assigned to prevStructZit, where prevStructZit

indicates how many standard deviations the structure count for molecule i’s protein family deviates

from the mean structure count across all protein families in that year. The weight θbiomed is assigned

to projects declared as biomedically important (biomedi). As with previously published structures,

it is important to assess how a molecule’s biomedical relevance changes over time. To capture this,

we measure the number of publications across all biomedical research fields (beyond structures)

related to molecule i by each given year. The weight θprevPubZ is assigned to prevPubZit, where

prevPubZit indicates how many standard deviations molecule i’s publication count deviates from

the annual mean. Additionally, θhuman is the weight for projects related to humans (humani),

θeukaryote is the weight for projects related to eukaryotes (eukaryotei), and θmembrane is the weight

for projects on membrane proteins (membranei).

4.2. Specification for the Learning Model P̂t

While the expression xijt(pit,θθθ | Ht−1, ct) specifies the reward function, the decision-maker (the

lab) lacks perfect information about all its components: the lab knows its preferences, the context

(including relevant molecular properties), and the history, but not the project’s true probability of



Zhuo: Exploitation vs. Exploration in Research Labs
20

success pit. Instead, it forms beliefs p̂it about this probability based on the context and history.7

The lab therefore makes allocation decisions based on its beliefs about the reward:

x̂ijt(p̂it,θθθ |Ht−1, ct) = cit ·θθθ · qijt(p̂it |Ht−1, ct). (7)

rather than on the true reward xijt(pit,θθθ |Ht−1, ct).

Our model for belief formation and updating of p̂it replicates how major PSI labs used supervised

machine learning to predict trial success probabilities from molecular properties and trial history

data. We reconstructed the training features used by the labs, comprising hundreds of molecular

properties predictive of trial success—from physicochemical characteristics to NIH-assigned labels

of novelty and biomedical importance.8 For the choice of machine learning algorithm, we imple-

mented random forest (RF) models based on Jahandideh et al. (2014),9 which found that random

forests consistently outperformed alternatives in predicting trial success probabilities.10

To capture belief updating dynamics as new trials were performed and outcomes observed, we

trained a chronological sequence of models: For each day t, model P̂t(· |Ht−1, ct) was trained using

only trial history available before t, with trial outcomes (success/failure) as the target variable and

molecular properties as features. Since the model is a random forest composed of independently

trained decision trees, each tree generates an individual prediction of a project’s success probability

p̂
(ntree)
it at time t based on its molecular properties. These predictions collectively form a posterior

distribution representing the lab’s belief about the project’s success probability, with mean p̂it and

variance V̂ arpit, which can be incorporated into Equation (7) to compute the lab’s belief about the

project’s reward. By training exclusively on trial data preceding t, we ensure that our reconstructed

machine learning models incorporate only the information available to decision-makers at each

7In the absence of any history, the lab’s belief about pit in the first period would be based on a prior. This situation
does not arise in our setting: at the initial period t= 2005/01/01, labs had access to trial history from the Pilot Phase
of the PSI, which informed their beliefs.

8A comprehensive list of these features appears in Appendix A.4.

9Implementation details are provided in Appendix B.

10According to the series of papers the labs published, various algorithms were tested over time, including logistic
regression, support vector machines, and random forests. A lab project coordinator we interviewed noted that the
growing trial history data had a greater impact on prediction accuracy than the specific choice of algorithm.
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point in time, preventing any leakage of future outcomes into past predictions. This approach

also mirrors the actual belief updating process, as the series of papers documenting these machine

learning models progressively expanded the trial history data used for training over time.

The key feature of learning in this setting is cross-molecular information spillovers rather than

just within-molecule updating. Each historical trial provides a data point linking molecular prop-

erties to success or failure. The machine learning model learns this mapping: P̂t :Ht−1, ct→ p̂it,

allowing any molecule’s predicted success probability p̂it to be informed not only by its own trial

history but also by the histories of molecules with similar properties. Each failure reveals which

molecular properties correlate with poor outcomes, while each success increases p̂it for molecules

sharing similar properties. This makes exploring less-trialed molecules particularly valuable for

expanding the feature space and improving out-of-sample predictions.

We note that, while we have made every effort to replicate the labs’ actual beliefs, our replication

may not be perfect.11 For instance, constructing some features relies on software packages that

have since become obsolete, so we have used the closest available substitutes. However, we do not

anticipate that any discrepancies will systematically bias the estimates from our policy inference.

Errors in replicating p̂it and V̂ arpit relative to the labs’ actual beliefs will bias our estimates if they

are systematically correlated with allocation decisions due to omitted variables. To mitigate this

risk, we have included all features documented in the labs’ machine learning approaches as well as

all NIH evaluation metrics in our replication of these models.

4.3. Parameterization of the Decision Policy π

The allocation policy maps the lab’s preferences and beliefs about reward distributions into trial

allocation decisions. Discussions with NIH program officers and a lab project coordinator indi-

cated that their “high-throughput” approach was heuristic (i.e. not guided by formal algorithms)

but informed by historical outcomes. Their decision process appeared consistent with insights

from the bandit literature—particularly the need to explore and maintain optimism under uncer-

tainty—though the optimality of their approach remains unclear. Given the heuristic nature of

11All sources of potential discrepancies we are aware of are documented in Appendix B.
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the decision process and the existence of multiple parameterizations consistent with the “high-

throughput” characterization, we specify a range of behavioral models for the allocation policy

to assess their fit to each lab’s choice data. These specifications include both theoretically moti-

vated parameterizations from classic bandit algorithms12 and empirically motivated reduced-form

specifications that serve as flexible benchmarks. We focus on simpler models grounded in basic

statistical reasoning rather than on complex but theoretically appealing policies (e.g., Kallus et al.

(2022), Si et al. (2023)), as we do not expect the labs’ decision policies to reflect high statistical or

computational sophistication.

All models we consider are index policies—approaches that compute an “index” value for each

option and allocate to those with the highest indices. This framework underlies many well-known

bandit algorithms.13 For an index policy to be optimal, the bandit problem must satisfy indexa-

bility—the condition that its optimal policy can be expressed as an index policy. This condition is

difficult to verify in complex settings and may fail in nonstationary environments like ours, where

index policies are often suboptimal (Ortner et al. 2012).14 Despite these theoretical limitations,

index policies dominate real-world applications due to their computational simplicity and ana-

lytical tractability.15 Given our aim of identifying policies that best describe actual lab behavior

without assuming optimality, index policies represent the most plausible candidates for modeling

behavior.

When extending index policies originally developed for single-play settings to multiple-play set-

tings, a standard approach is to select multiple arms with the highest index values (Komiyama

12Widely cited texts such as Russo et al. (2017) and Lattimore and Szepesvári (2020) provide excellent overviews
of these algorithms.

13In standard multi-armed bandits, where only one arm is pulled per period and arms are independent, an index
policy assigns a real-valued index to each arm using arm-specific statistics and selects the highest-indexed arm
(Lattimore and Szepesvári 2020). In contextual bandits, indices may also depend on observed context. For Thompson
Sampling, the index is sampled from the posterior distribution of the expected reward for each arm, rather than
computed deterministically.

14However, UCB-like policies can achieve near-optimal performance under certain conditions, such as abrupt
changes at unknown periods (Garivier and Moulines 2011).

15For example, see Nguyen-Thanh et al. (2019) for implementation at OpenAI, and He et al. (2020) for application
at Taobao.
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et al. 2015, Lagrée et al. 2016, Zhou and Tomlin 2018). We follow this convention. A remaining

complexity in our setting is that the same arm can be pulled multiple times within a period;

this can be done by employing an iterative procedure that sequentially identifies and selects the

next-best arm, as detailed in Algorithm 1.

Algorithm 1: Dynamic Trial Allocation Algorithm

Input:
Agent choices: Reward weights θθθ, learning model specification (RF, molecular features),

allocation policy π
Exogenous: Horizon T = {2005/01/01, ...,2015/12/31}, capacity constraints {nt}t∈T

For each period t∈ T :
Observe available projects Kt(Ht−1) and train learning model P̂t(· |Ht−1, ct) ; /* For
t= 2005/01/01, history includes Pilot Phase data */
Initialize allocation vector at = (0, . . . ,0) ; /* at(i) tracks trials allocated to
project i */
For n= 1 to nt:

For each project i∈Kt(Ht−1):
Compute index value Vi,at(i)+1,t for the (at(i)+ 1)-th trial of project i based on

predicted p̂it from P̂t(· |Ht−1, ct), θθθ and π;
End
Select project i∗ = argmaxi∈Kt(Ht−1)

Vi,at(i)+1,t ; /* In case of ties, select a

project uniformly at random from the tied projects */
Update allocation: at(i

∗)← at(i
∗)+ 1;

End
Execute trials according to allocation vector at;
Observe outcomes and update history Ht;

End

The models we consider, summarized in Table 2, differ in how they compute the index value V .

However, they all include a random noise term ϵit that follows a standard Gumbel distribution,

independently and identically distributed (i.i.d.) across projects within each period. This term

captures random, unmodeled fluctuations in the labs’ perceived value for each option. Additionally,

the Gumbel error transforms the choice into a tractable softmax function and prevents deterministic

arm selections, which would otherwise produce a non-smooth likelihood function that is difficult

to maximize during estimation.

Among the theoretically motivated models, the Greedy model allocates trials to projects with the

highest expected reward (including ϵit) without exploration. Other models incorporate exploration

incentives beyond expected reward maximization. For example, the Explore-Then-Commit model

prioritizes new projects entering the choice set Kt(Ht−1), trying each exactly once before reverting
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to greedy allocation. The UCB1 model includes a square root exploration bonus that decreases

convexly with the number of trials—new projects receive large bonuses while subsequent trials

receive progressively smaller ones.

Table 2 Index Value Specifications Across Behavioral Trial Allocation Models

Model Index Value Specification Vijt (parameters to be estimated: θθθ,λ1, λ2)

Theoretically Motivated

Greedy x̂ijt(p̂it,θθθ|Ht−1, ct)+ ϵit
Gittins Index x̂ijt(p̂it,θθθ|Ht−1, ct)+ψ(·)

√
V ar(x̂ijt(p̂it,θθθ|Ht−1, ct))+ ϵit

Thompson Sampling x̂ijt(p̂
DRAW
it ,θθθ|Ht−1, ct)+ ϵit

Explore-Then-Commit ∞ if Ji(t− 1) = 0, otherwise x̂ijt(p̂it,θθθ|Ht−1, ct)+ ϵit

UCB1 x̂ijt(p̂it,θθθ|Ht−1, ct)+
√

exp(λ1)

[Ji(t−1)+j]
+ ϵit

Reduced-Form

1st-Degree Polynomial x̂ijt(p̂it,θθθ|Ht−1, ct)+λ1[Ji(t− 1)+ j] + ϵit
2nd-Degree Polynomial x̂ijt(p̂it,θθθ|Ht−1, ct)+λ1[Ji(t− 1)+ j] +λ2[Ji(t− 1)+ j]2 + ϵit
Flexible Variance x̂ijt(p̂it,θθθ|Ht−1, ct)+λ1

√
V ar(x̂ijt(p̂it,θθθ|Ht−1, ct))+ ϵit

Flex Var+Time Discounting x̂ijt(p̂it,θθθ|Ht−1, ct)+λ1

√
V ar(x̂ijt(p̂it,θθθ|Ht−1, ct))−λ2[t− τi(t− 1)]+ ϵit

Combined

UCB1+Time Discounting x̂ijt(p̂it,θθθ|Ht−1, ct)+
√

exp(λ1)

Ji(t−1)+j
−λ2[t− τi(t− 1)]+ ϵit

Note: Due to the difficulty of computing the exact Gittins (1979) index, Brezzi and Lai (2002)’s approximation is
used. ψ(·) is defined as

ψ(s) =



√
s/2 if s≤ 0.2

0.49− 0.11s−1/2 if 0.2< s≤ 1

0.63− 0.26s−1/2 if 1< s≤ 5

0.77− 0.58s−1/2 if 5< s≤ 15

{2log(s)− log(log(s))− log(16π)}−1/2 if s > 15,

where s= V̂ arpit
−ln(β)p̂it(1−p̂it)

. The discount factor β is set to 0.95. V ar(x̂ijt(p̂it,θθθ|Ht−1, ct)) =
∫
((x̂ijt(pit,θθθ|Ht−1, ct)−∫

x̂ijt(pit,θθθ|Ht−1, ct) dP̂t(pit|Ht−1, ct))
2 dP̂t(pit|Ht−1, ct) represents the variance of the predicted reward of trial j of

project i based on historical data. p̂DRAW
it in Thompson Sampling is a random draw from the distribution of the

predicted probability of success generated by the RF model P̂t(· |Ht−1, ct). Ji(t− 1) represents the number of trials
the lab had previously allocated to project i prior to period t, and j represents the jth trial considered on day t.
Together, [Ji(t−1)+ j] represents the overall order of the trial for project i. Recent implementations of UCB1 adopt
a constant value instead of 2 ln(Nlt) in Equation (1) (Lattimore and Szepesvári 2020). In our version of UCB1, we
do not assign an infinite value to Vijt when Ji(t− 1) + j = 1. Doing so would result in an infinite likelihood, which
complicates both maximum likelihood estimation and the identification of λ1, as the latter relies on the distribution
of the number of trials across projects. Since the value in the square root must be nonnegative, we use exp(λ1) to
ensure the numerator is nonnegative in our unconstrained likelihood maximization routine. τi(t− 1) is the period
in which the last trial on i was performed, from the perspective of period t. For new projects with no prior trials,
τi(t− 1) = t.

Among the reduced-form models, the polynomial specifications use polynomial terms of trial

order to approximate the value of exploring less-tried projects. A negative λ1 would be consis-

tent with the empirical pattern that such projects received more trials. The Flexible Variance



Zhuo: Exploitation vs. Exploration in Research Labs 25

model allows the variance of the predicted reward V ar(x̂ijt(p̂it,θθθ|Ht−1, ct)) to flexibly influence

index values, capturing how uncertainty in reward beliefs affects allocation decisions. The Flexible

Variance+Time Discounting model further incorporates time-discounting for older projects, where

[t−τi(t−1)] measures the time since the project’s last allocation. A positive λ2 would be consistent

with the observed tendency to rarely revisit long-dormant projects.

Our final specification, UCB1+Time Discounting, combines theoretical and empirical features:

UCB1’s convex exploration bonus that captures diminishing marginal exploration value, plus time-

discounting that devalues older projects.

5. Policy Inference Procedure

This section outlines how we estimate the parameters θθθ,λ1, λ2 for each behavioral model via max-

imum likelihood estimation (MLE). MLE finds the parameter values that maximize the likelihood

of observing the decision sequence in the data (a1, . . . , aT ), where each at is chosen from available

actions At given context ct and history Ht−1 = (c1, a1, x1, . . . , ct−1, at−1, xt−1) (notations defined in

Section 4). Models can then be compared based on their fit and predictive performance at these

estimated parameters.

5.1. Addressing the Curse of Dimensionality

The curse of dimensionality in this estimation task arises from two sources: (1) The learning process

involves hundreds of factors that influence the agent’s beliefs about project reward distributions

in complex, nonlinear ways. These beliefs change dynamically as parameters vary and must be

continuously updated while the estimator searches for the likelihood-maximizing parameter values.

(2) Computing the likelihood of observing action at requires considering how often at would be

chosen among all possible allocation vectors in At. This is a combinatorial problem: with |Kt(Ht−1)|

typically reaching tens of thousands of projects and capacity constraint nt averaging over 20 trials

per day, the resulting vector space becomes extremely large.

The key simplification addressing (1) is that we have already extracted the component of the

labs’ beliefs about rewards that requires updating—the predicted trial success probability p̂it.
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We replicated the labs’ updating process and precomputed p̂it for each project and period based

on observed history. These p̂it values can be directly incorporated into the reward and index

calculations and remain fixed throughout the estimation, even as parameter changes in θθθ,λ1, and

λ2 cause reward and index values to vary at each iteration. This greatly reduces computational

complexity.

To address (2), we introduce Algorithm 2, which operates on a non-combinatorial action space

while producing identical allocation patterns as Algorithm 1 under appropriate assumptions about

the Vijt functional form.

Algorithm 2: Dynamic Trial Allocation Algorithm (Non-Combinatorial)

Input:
Agent choices: Reward weights θθθ, learning model specification (RF, molecular features),

allocation policy π
Exogenous: Horizon T = {2005/01/01, ...,2015/12/31}, capacity constraints {nt}t∈T

For each period t∈ T :
Observe available projects Kt(Ht−1) and train learning model P̂t(· |Ht−1, ct);
For each project i∈Kt(Ht−1) and potential trial j ∈ {1,2, . . . , nt}:

Compute index value Vijt based on predicted p̂it from P̂t(· |Ht−1, ct), θθθ and π;
End
Sort all project-trial pairs (i, j) in descending order of Vijt;
Let Vthreshold be the nt-th largest value of Vijt;
Define allocation set aaat = {(i, j) : Vijt >Vthreshold} ; /* Allocate trials with values
above threshold */
Let ãaat = {(i, j) : Vijt = Vthreshold} ; /* Project-trials at threshold */
Let k= nt− |aaat| ; /* Remaining slots to fill */
if k > 0 then

Randomly select k project-trial pairs from ãaat and add to aaat;
end
Execute all trials in aaat;
Observe outcomes and update history Ht;

End

The equivalence between Algorithm 1 and Algorithm 2 holds if and only if index values preserve

trial ordering: for each project i and period t, the index value of an earlier trial (j) is at least as

large as that of any later trial (j′ > j), i.e., Vijt ≥ Vij′t for all j < j
′.16 Otherwise, Algorithm 2 may

allocate later trials before earlier ones (e.g., a third trial before the first), which is nonsensical; in

contrast, Algorithm 1 always allocates trials sequentially (first trial, then second, then third, etc.).

16If index values are equal, trials can be relabeled so that lower-indexed (j) trials are allocated first, ensuring
correct ordering.



Zhuo: Exploitation vs. Exploration in Research Labs 27

For our Greedy model, this ordering property holds because, for any period t and project i, the

index values Vijt and Vij′t differ by only one term—qijt(p̂it|Ht−1, ct)≥ qij′t(p̂it|Ht−1, ct).
17 The prop-

erty holds for similar reasons for the Gittins Index, Thompson Sampling, Explore-Then-Commit,

and UCB1 models (with or without time discounting) described in Section 4.3. For the Flexible

Variance and Flexible Variance + Time Discounting models, it holds when λ1 ≥ 0 (i.e., when the

lab values exploring high-variance projects). For polynomial-based models, it holds when λ1, λ2 ≤ 0

or when λ1 < 0 with small positive λ2 relative to |λ1| (as in our estimates) for moderate values of

j (on the order of 103 or less).

Given this equivalence, Algorithm 2 circumvents the combinatorial explosion by reducing alloca-

tion decisions to simple threshold comparisons: If the threshold project-trial were known and fixed

in each period, we would only need to compare each project-trial’s index value to this threshold

to determine whether the trial is allocated. In practice, the threshold project-trial varies with the

model class and parameter values. However, because index values are densely distributed across

tens of thousands of projects (large Kt(Ht−1)), it is reasonable to assume that the threshold, as a

function of θθθ,λ1, λ2, changes smoothly and continuously under small parameter perturbations in

the maximum-likelihood search. Under this assumption, small changes to individual project-trials’

index values will not significantly shift the threshold value, allowing us to treat it as effectively fixed

relative to individual project-trials. This, in turn, enables straightforward likelihood construction

without combinatorial complexity.

5.2. Constructing the Likelihood Function

The first step in constructing the likelihood function is determining the threshold value Vthr,t for

each day. Given the precomputed p̂it, θθθ, and allocation policy π (including λ1, λ2 if applicable), we

compute Vijt values for all project-trial pairs in Kt(Ht−1)× {1,2, . . . , nt}. The threshold Vthr,t is

the nt-th largest among these values. We can then calculate the likelihood of allocating trial j to

project i in period t using Equation (8).

17qijt(p̂it|Ht−1, ct) = (1− p̂it)
mi,t(Ht−1)+j−1p̂it ≥ (1− p̂it)

mi,t(Ht−1)+j′−1p̂it = qij′t(p̂it|Ht−1, ct), with equality only
when p̂it ∈ {0,1}.
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Pr(aijt = 1;θθθ,λ1, λ2,Ht−1, ct, π) = Pr(Vijt >Vthr,t; θθθ,λ1, λ2,Ht−1, ct, π). (8)

For the Greedy policy, this becomes:

Pr(aijt = 1;θθθ,Ht−1, ct, π) = Pr(x̂ijt(p̂it,θθθ|Ht−1, ct)+ ϵit > x̂thr,t(θθθ|Ht−1, ct)+ ϵthr,t)

=
exp(x̂ijt(p̂it,θθθ|Ht−1, ct))

exp(x̂ijt(p̂it,θθθ|Ht−1, ct))+ exp(x̂thr,t(θθθ|Ht−1, ct))
.

(9)

where the equality follows from i.i.d. Gumbel errors, yielding a smooth likelihood function.18 Likeli-

hood functions for other models in Section 4.3 are derived analogously; see Appendix C for details.

Thus, given the observed action aijt in the data, its likelihood of occurrence under policy π is:

Pr(aijt;θθθ,λ1, λ2,Ht−1, ct, π) =

{
Pr(aijt = 1;θθθ,λ1, λ2,Ht−1, ct, π) if aijt = 1 (actually allocated),

1−Pr(aijt = 1;θθθ,λ1, λ2,Ht−1, ct, π) if aijt = 0 (non-allocated).

(10)

The total log-likelihood is obtained by summing the log-likelihoods of the observed actions for all

project–trial pairs across the time horizon.19 We estimate the parameters θ̂θθ, λ̂1, λ̂2 under policy π

by maximizing this total log-likelihood:20

θ̂θθ, λ̂1, λ̂2 = argmax
θθθ,λ1,λ2

T∑
t

∑
i∈Kt

nt∑
j=1

log [Pr(aijt;θθθ,λ1, λ2,Ht−1, ct, π)] (11)

The separate identification of these parameters is intuitive, based on revealed preferences and

variation in project-trial characteristics across choice sets. Consider, for example, the identifica-

tion of θbiomed and λ1 in the UCB1 model. If the lab consistently assigns trials to biomedically

important projects—regardless of whether those projects are new or extensively trialed—we infer a

relatively high value for the weight on biomedical importance (θbiomed) compared to the exploration

bonus term (λ1). Our likelihood function is structured so that a large positive θbiomed increases the

18Ano and Martinez-de Albeniz (2023) also use i.i.d. Gumbel errors to smooth the likelihood.

19To avoid numerical issues, any probability value Pr(aijt;θθθ,λ1, λ2,Ht−1, ct, π) equal to zero is replaced with 10−300

before taking logarithms.

20When the total number of project–trial pairs,
∑T

t=1 |Kt| ×nt, is too large for memory-efficient computation, we
evaluate the likelihood on a random subsample rather than the full set of project-trial pairs. This approach yields
consistent and asymptotically unbiased parameter estimates as long as the subsample is randomly drawn. In our
implementation, since nt ≪ |Kt|, the number of allocated trials is small relative to |Kt| × nt. We therefore include
all allocated trials in the likelihood calculation and, for non-allocated trials, randomly sample one observation per
project per period.
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expected rewards and index values of biomedically important projects relative to the distribution

of index values in Kt(Ht−1)× {1,2, ..., nt}, while lowering those of less important projects. This

increases the likelihood of allocating trials to biomedically important projects while decreasing it

for others, thereby maximizing the likelihood of the observed allocation decisions. Conversely, if the

lab frequently trials new projects, regardless of biomedical importance, a higher exploration bonus

term (λ1) relative to the weight on biomedical importance (θbiomed) would maximize the likelihood

of the observed allocation decisions. The separate identification of other parameters follows similar

logic.

6. Policy Inference Results

Table 3 summarizes how well each model fits the choice data for each lab, measured by in-sample

log-likelihood at convergence. While model fit varies across labs, several consistent patterns emerge.

First, as expected, more flexible models with additional parameters generally achieve higher log-

likelihoods.

Second, UCB-based models consistently outperform both other theoretically motivated models

and reduced-form specifications, highlighting the advantage of incorporating a convex decreasing

function of trial order. Among the theoretically motivated models, UCB1 often achieves a log-

likelihood several times smaller in absolute value despite having only one additional parameter.

Among models with a single λ parameter, UCB1’s log-likelihood is 57–86% of the 1st-Degree Poly-

nomial model and 32–48% of the Flexible Variance model. Among models with two λ parameters,

UCB1+Time Discounting’s log-likelihood is 34–48% of the 2nd-Degree Polynomial model and 36–

59% of the Flexible Variance + Time Discounting model.

Including a time discounting component further improves fit: comparing Flexible Variance to

Flexible Variance + Time Discounting, and UCB1 to UCB1 + Time Discounting, log-likelihood

often reduces by more than half in absolute value, suggesting that project recency played a key

role in labs’ allocation decisions.

Overall, UCB1+Time Discounting consistently delivers the best in-sample fit across all labs,

indicating that combining a theoretically grounded exploration term with an empirically motivated

reduced-form specification yields the most accurate behavioral model.
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Table 3 In-Sample Fit: Log-Likelihood Comparison Across Allocation Models

Total Log-Likelihood

Model No. of λ parameters JCSG MCSG NESG NYSGRC*

Greedy 0 -1,348,971 -678,188 -652,549 -738,084
Gittins 0 -1,303,780 -556,319 -537,689 -640,445
Thompson Sampling 0 -1,216,347 -1,549,642 -1,096,289 -1,332,608
Explore-Then-Commit 0 -1,678,233 -3,723,545 -3,549,819 -12,213,009
UCB1 1 -532,841 -270,643 -196,923 -338,070
1st-Degree Polynomial 1 -616,074 -463,278 -314,621 -598,133
2nd-Degree Polynomial 2 -615,238 -462,554 -270,591 -590,909
Flexible Variance 1 -1,107,427 -629,079 -613,721 -697,545
Flex Var+Time Discounting 2 -412,705 -339,715 -329,225 -488,325
UCB1+Time Discounting 2 -212,503 -157,909 -118,780 -286,268

Note: Each model is estimated separately for the periods 2005–2008 (the second phase of PSI) and 2009–2015 (the
third phase of PSI) for each lab, since the parameters θθθ are expected to differ across phases due to the greater
emphasis on biomedically important projects during the third phase. The total log-likelihood for each model is the
sum of the log-likelihoods from both phases. Estimated parameter values are presented in Appendix Tables D1–D4.
*Results for NYSGRC should be interpreted with caution due to data quality concerns.

Table 4 shows how accurately each model predicts the observed trial allocations in the estimation

sample, evaluated at the estimated parameters. A well-fitting model should assign high predicted

probabilities of allocation to trials that were actually allocated and low probabilities to those that

were not. The results confirm that UCB1+Time Discounting performs best. For trials that were

actually allocated, the model predicts an average allocation probability of 70–91%, considerably

higher than all other models across labs. For non-allocated trials, it predicts an average allocation

probability of just 0.1–0.6%, again much lower than competing models.

We next evaluate the out-of-sample predictive performance of each model. Specifically, we esti-

mate model parameters using data from 2005–2006 (the initial years of the second phase of PSI)

and 2009–2011 (the initial years of the third phase), and assess each model’s ability to predict trial

allocations in the subsequent periods—2007–2008 and 2012–2015—which are not used in estima-

tion. Table 5 presents the out-of-sample predicted likelihoods of allocation. As with the in-sample

results in Table 4, the UCB1+Time Discounting model again performs best, with predictive accu-

racy closely mirroring its in-sample performance.

While the estimates tables (Appendix Tables D1–D4) are too large to include in the main text,

the results from our best-fitting model, UCB1+Time Discounting, appear reasonable for each lab
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Table 4 In-Sample Fit: Predicted Likelihood of Allocation Across Models

Predicted Likelihood of Allocation

Actually Allocated Trials Non-Allocated Trials

Model JCSG MCSG NESG NYSGRC* JCSG MCSG NESG NYSGRC*

Greedy 0.685 0.642 0.567 0.526 0.114 0.006 0.007 0.011
Gittins 0.637 0.650 0.567 0.537 0.117 0.005 0.006 0.009
Thompson Sampling 0.564 0.445 0.405 0.378 0.099 0.019 0.017 0.027
Explore-Then-Commit 0.711 0.712 0.654 0.615 0.089 0.002 0.003 0.005
UCB1 0.854 0.770 0.762 0.682 0.020 0.002 0.002 0.004
1st-Degree Polynomial 0.834 0.647 0.716 0.540 0.013 0.002 0.001 0.006
2nd-Degree Polynomial 0.835 0.647 0.716 0.542 0.013 0.002 0.002 0.005
Flexible Variance 0.688 0.652 0.572 0.532 0.084 0.004 0.005 0.008
Flex Var+Time Discounting 0.710 0.761 0.682 0.607 0.018 0.002 0.003 0.006
UCB1+Time Discounting 0.909 0.851 0.839 0.701 0.006 0.001 0.001 0.004

Note: Parameter estimates from Appendix Tables D1–D4 are used to predict allocation likelihood, Pr(aijt =

1; θ̂θθ, λ̂1, λ̂2,Ht−1, ct, π), within the estimation sample. These predicted likelihoods are then averaged separately for
the actually allocated trials and the non-allocated trials. *Results for NYSGRC should be interpreted with caution
due to data quality concerns.

Table 5 Out-of-Sample Fit: Predicted Likelihood of Allocation Across Models

Predicted Likelihood of Allocation

Actually Allocated Trials Non-Allocated Trials

Model JCSG MCSG NESG NYSGRC* JCSG MCSG NESG NYSGRC*

Greedy 0.632 0.644 0.552 0.493 0.086 0.008 0.005 0.014
Gittins 0.582 0.653 0.552 0.501 0.093 0.007 0.004 0.011
Thompson Sampling 0.564 0.462 0.406 0.365 0.072 0.020 0.013 0.036
Explore-Then-Commit 0.674 0.692 0.653 0.616 0.067 0.005 0.001 0.003
UCB1 0.833 0.770 0.762 0.707 0.025 0.003 0.001 0.004
1st-Degree Polynomial 0.809 0.704 0.661 0.514 0.012 0.002 0.001 0.006
2nd-Degree Polynomial 0.725 0.704 0.668 0.515 0.016 0.002 0.001 0.006
Flexible Variance 0.670 0.670 0.556 0.504 0.062 0.005 0.003 0.008
Flex Var+Time Discounting 0.717 0.769 0.689 0.602 0.015 0.003 0.002 0.007
UCB1+Time Discounting 0.863 0.866 0.837 0.728 0.008 0.002 0.001 0.003

Note: Each model is estimated separately for 2005–2006 (the initial years of the second phase of PSI) and 2009–2011
(the initial years of the third phase of PSI) for each lab. The resulting estimates are then used to predict allocation
likelihood for observations from 2007–2008 and 2012–2015, respectively. Predicted likelihoods are averaged separately
for allocated and non-allocated trials. *Results for NYSGRC should be interpreted with caution due to data quality
concerns.

and align with our understanding that the labs valued exploration. We find that λ1 takes on

large positive values, indicating a substantial exploration bonus. We also consistently find λ2 > 0,

suggesting that labs favor more recent projects over older ones. Notably, the estimate θ̂biomed is
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higher in the third phase of PSI than in the second across all labs, consistent with the greater

emphasis on biomedical importance during that phase—providing a useful validity check.

Several important considerations should be kept in mind when interpreting the fitted models and

parameter estimates. First, the parameter estimates are unitless and normalized relative to an error

term following a standard Gumbel distribution, so they are not directly comparable across labs

(though it remains meaningful to interpret their signs and compare their magnitudes within a lab,

provided one assumes that the error-term distribution is consistent across phases within the lab).

Second, the estimated θθθ weights reflect what and how much the labs valued in their multi-objective

decision-making; these are not necessarily aligned with societal values. For example, labs may have

prioritized factors that society deems unimportant or undervalued key aspects such as biomedical

importance—indeed, during the second phase of PSI, biomedical relevance was underemphasized,

sparking debate and leading to its increased prominence in the third phase. Finally, the policy

inference exercise does not address whether the best-fitting model represents a better or worse

policy in terms of long-term reward maximization. Assessing that would require a simulation-based

analysis, which we present in the next section.

7. Simulation-Based Evaluation and Improvement of Decision Policies

In this section, we demonstrate how our policy inference results enable simulation-based evaluation

of policy performance for maximizing long-term reward. We simulate trial allocations and rewards

under three scenarios of increasing implementation difficulty. The first involves a straightforward

algorithmic adjustment requiring no changes to personnel, funding, or equipment—an easily imple-

mentable intervention. The second shortens the PSI Pilot Phase, necessitating earlier deployment

of specialized personnel and infrastructure for trial data analytics, and thus requiring additional

funding and coordination. The third is aspirational: it entails extensive coordination and prolonged

data collection to build high-quality resources before the PSI, representing the most challenging but

potentially highest-impact intervention. Together, these scenarios illustrate how policy inference

can guide incremental evaluation of policy changes and support evidence-based improvement.
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To evaluate these interventions, we simulate the sequential interaction between the lab (decision-

maker) and nature (environment). This simulation requires two distinct components: (1) predict-

ing how labs allocate trials based on trial history, and (2) modeling how nature generates

corresponding rewards. Our policy inference results address the first component but not the

second.

Lab allocation simulation: Our policy inference provides the components needed to simulate

lab decisions. We estimated each lab’s reward weights, replicated how they updated beliefs about

trial success from history, and identified the model class and parameters governing their alloca-

tions. Given history Ht−1, context ct, policy π, estimated reward weights θ̂θθ, and predicted success

probabilities p̂it from the learning model, we can compute index values using the formula for π

described in Section 4.3 and simulate allocation decisions by assigning trials with the highest index

values. We can also modify these elements—for example, by adopting a more effective learning

model that improves p̂it accuracy or by changing the allocation model class to π′—to simulate

counterfactual allocation decisions.

Nature’s reward generation: The remaining challenge is modeling nature’s mechanism for

generating true success probabilities pit. This requires a separate model P ∗
t —distinct from labs’

learning model P̂t—since labs’ beliefs may not accurately reflect the true data-generating process

Pt. This discrepancy arises from several inherent difficulties in recovering true success probabilities

from observational data: limited data availability, as labs had only sparse trial histories in earlier

years to train their P̂t models; data incompleteness, since outcomes for project-trials that were

considered but not pursued remain unobserved; and selection bias, because the observed outcomes

are unlikely to be randomly distributed.

The implementation of P ∗
t resembles P̂t in that both use hundreds of molecular properties as pre-

dictive features, reflecting the extensive efforts of labs to improve their prediction models. However,

P ∗
t differs from P̂t in key ways to better address the challenge of estimating true success proba-

bilities from observed data. For instance, whereas P̂t is a sequence of models updated periodically
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as trial history accumulates, P ∗
t is a single model trained on the full history HT , incorporating

characteristics and outcomes from all observed trials. In replicating P̂t, we restrict features to those

used in the labs’ implementation, but in P ∗
t we also include additional variables we know to be

important, such as the timing of trials to capture nonstationarity in outcomes. Appendix B details

the additional bias reduction measures we implemented to improve P ∗
t ’s ability to capture the true

dynamics of project success probabilities. Our aim is for P ∗
t to yield unbiased estimates of these

probabilities, which—even if not perfectly accurate—would be sufficient for reliably estimating the

long-run rewards required for policy evaluation.

Still, we acknowledge that no model is likely to fully capture nature’s reward-generating mech-

anism in such a complex context. Our use of P ∗
t to represent the true data-generating process

corresponds to the “direct method” commonly used in the off-policy evaluation literature, in which

predicted rewards are generated directly by a model trained on observed data (Farajtabar et al.

2018). We do not employ more advanced techniques, such as importance sampling or doubly robust

estimators, because current state-of-the-art techniques generally assume a stationary environment

generated the observed data (Dud́ık et al. 2011, 2014, Farajtabar et al. 2018, Kallus et al. 2022, Si

et al. 2023). To our knowledge, the literature has not yet produced reliable and easy-to-implement

adaptations of these methods for off-policy evaluation in bandit settings with nonstationary data-

generating environments.

The simulation procedure is outlined in Algorithm 3. We clarify a few key points. First, long-term

reward and performance under alternative policies are evaluated using the sum of counterfactually

simulated rewards across allocated trials:
∑T ′

t=t′
∑

(i,j)∈aaa′t
x′
ijt. Second, the reward function weights

are set to the estimated values from our best-fitting model (UCB1+Time Discounting) in the Policy

Inference exercise, reflecting the lab’s revealed preferences for assessing project-trial rewards. Since

these weights may not align with societal values, we evaluate performance solely based on inferred

lab preferences. If reliable societal weights were available, they could replace lab weights in the

reward calculation to assess potential underperformance due to “misaligned” preferences. Third,
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we set the new projects entering the counterfactual set of available projects each day to be identical

to the actual new projects observed. These projects result from NIH’s three mechanisms for project

nomination, which we treat as exogenous and do not attempt to model. This also restricts the set of

projects to those with observed outcomes—since every NIH-assigned project received at least one

trial—mitigating the risk that P ∗
t may extrapolate poorly when estimating success probabilities

for projects never attempted. Our analysis therefore examines the impact of counterfactual trial

allocation across existing projects under alternative policies, rather than the impact of introducing

new arms (i.e., projects never assigned by the NIH in reality).

Algorithm 3: Simulation of Sequential Interaction between the Lab and Nature

Input:
Agent choices: Reward weights θθθ′ ; /* set to θ̂θθ from best-fitting model */

Learning model specification ; /* RF, neural net, etc.; which features? */
Allocation policy π′ ; /* Greedy, Gittins, etc. */
Pilot phase {2000/01/01, ..., t′− 1};
Post-pilot period T ′ = {t′, ...,2015/12/31} where t′ is transition date;

Exogenous: Actual, full trial history HT ; true success probability model P ∗
t (· |HT , cT );

Capacity constraints {nt}t∈T ′ ; ; /* actual daily number of trials allocated */
Pilot phase history H ′

t′−1 =Ht′−1 ; /* actual history prior to t′ */

New projects entering K ′
t(H

′
t−1) each day ; /* actual project arrivals */

Evaluation horizon {2005/01/01, ...,2015/12/31} ; /* actual PSI Phase 2 & 3 */
For each period t∈ T ′:

Observe available projects K ′
t(H

′
t−1) and train learning model P̂ ′

t (·|H ′
t−1, c

′
t);

For each potential trial (i, j)∈K ′
t(H

′
t−1)×{1, ..., nt}:

Compute index value V ′
ijt based on predicted p′it from P̂ ′

t (· |H ′
t−1, c

′
t), θθθ

′ and π′;
End
Sort all project-trial pairs (i, j) in descending order of V ′

ijt;
Select top nt trials according to lab capacity constraint;
For each allocated trial (i, j) in allocation set aaa′t:

Generate success probability p∗it|H ′
t−1, c

′
t, P

∗
t (· |HT , cT ) ; /* true success

probability model predicting based on current history and context */
Draw trial success outcome ∼Bernoulli(p∗it);
Generate reward x′

ijt = c′it ·θθθ′ if this is the first successful trial of i, x′
ijt = 0 otherwise;

End
Update H ′

t with new allocations and rewards;
End

Output: Counterfactually simulated long-term rewards
∑T ′

t=t′
∑

(i,j)∈aaa′t
x′
ijt

7.1. Alternative Allocation Model Classes

In this set of simulations, we examine whether adopting well-established alternative allocation mod-

els can improve the labs’ long-term rewards. We focus on models that are ex ante “feasible”—those
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Table 6 Simulated Rewards Under Alternative Allocation Models, 2005–2015

Total Rewards

Model JCSG MCSG NESG NYSGRC*

Greedy 2,245,884 40,729 28,395 -1,932
Gittins 1,976,002 81,841 50,679 3,854
Thompson Sampling 2,186,106 101,402 59,727 32,896
Explore-Then-Commit 2,313,911 80,855 43,663 37,834

Best-fitting model 1,803,448 142,065 80,182 60,405
Actual 1,791,494 121,220 80,385 56,486

Note: Each simulation uses θ̂θθ estimated from the UCB1+Time Discounting model, as reported in Appendix Tables D1–
D4. We set t′ = 2005/01/01, marking the start of the second phase of PSI, when labs adopted the high-throughput
approach to trial allocation. For the learning model, we retain the same specification (random forest), features,

and hyperparameters used in our replication of the labs’ machine learning approach. P̂ ′
t is periodically retrained

during the simulation as the counterfactual history accumulates. Simulated rewards under the best-fitting model
(UCB1+Time Discounting) from the policy inference exercise appear in the second-to-last row. Actual rewards,

calculated by summing the observed unique structures’ characteristics weighted by θ̂θθ, are shown in the final row.
Negative rewards are possible because we require all available trials to be allocated in each period. Relaxing this
constraint would allow labs to skip allocations when expected rewards are negative, resulting in a nonnegative total
reward. Additional statistics, including simulated trial distributions, characteristics, and outcomes, are reported in
Appendix Tables D5–D8. All reported statistics are averages over three simulation runs per model. *Results for
NYSGRC should be interpreted with caution due to data quality concerns.

without free parameters beyond θθθ—including Greedy, Gittins Index, Thompson Sampling, and

Explore-Then-Commit. More sophisticated models with numerous free parameters are challeng-

ing to tune without ex post outcome data, making ex ante policy recommendations difficult. In

contrast, feasible models can be implemented without extensive domain knowledge and provide

practical benchmarks for evaluating current allocation strategies and identifying readily available

improvements.

Table 6 reports cumulative simulated rewards, while Figure 2 shows their trajectory over time. If

the best-fitting model (UCB1 + Time Discounting) accurately reflects the lab’s decision process and

our approximation (P ∗
t ) of the true data-generating process is unbiased, simulated trial allocations,

structures, and rewards under this model should closely resemble the actual data. The results in

Table 6 and Figure 2 largely support this expectation, with one notable exception: MCSG during

2013–2015, where simulated rewards visually diverge from observed outcomes. Additional statistics

and visualizations on trial distributions and structure characteristics are provided in Appendix

Tables D5–D8 and Figures D1–D7. These further confirm that simulations using the best-fitting

model and P ∗
t capture observed patterns reasonably well.



Zhuo: Exploitation vs. Exploration in Research Labs 37

Figure 2 Simulated Reward Trajectories Under Alternative Allocation Models

(a) JCSG (b) MCSG

(c) NESG (d) NYSGRC*

Note: The period 2000–2004 represents actual historical data (shown to the left of the red vertical line). Because
the reward function is not estimated for this period, rewards are displayed as zero. The period from 2005 onward
(to the right of the red vertical line) shows simulated annual rewards. Each line represents rewards under a different
allocation model, averaged over three simulation runs. For additional plots on simulated trial characteristics and the
properties of produced structures, see Appendix Figures D1–D7. *Results for NYSGRC should be interpreted with
caution due to data quality concerns.

We next compare alternative allocation policies to the best-fitting model. Results vary by lab. For

JCSG, switching to an Explore-Then-Commit policy increases cumulative rewards by up to 28%.

For other labs, the best-fitting model remains the highest-performing policy, making straightfor-

ward improvements more difficult. Relative policy performance differs across labs, but the Greedy

policy is never optimal, highlighting the importance of exploration in this setting.

7.2. Varying the Duration of the PSI Pilot Phase

In this set of simulations, we examine how the duration of the PSI Pilot Phase—when labs relied on

ad hoc allocation policies—affects long-term performance. Although little is known about decision-
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Table 7 Simulated Rewards (2005–2015) Under Alternative Allocation Models with Shortened Pilot Phase

Total Rewards

JCSG JCSG MCSG NESG NYSGRC*

UCB1+Time Explore-Then- UCB1+Time UCB1+Time UCB1+Time
Pilot Phase ended by Discounting Commit Discounting Discounting Discounting

2000 1,946,583 2,519,106 140,077 75,259 60,236
2001 1,933,400 2,587,281 144,312 81,617 60,187
2002 1,894,864 2,413,062 141,106 78,462 60,408
2003 1,877,904 2,319,366 142,352 78,904 59,074
2004 1,860,367 2,277,074 144,105 76,890 61,716
2005 (actual) 1,803,448 2,313,911 142,065 80,182 60,405

Note: Counterfactual simulations examine shortened pilot phases ending by various dates. For the first row, we set
t′ = 2000/01/01, with initial trial history H ′

t′−1 including limited trials from structural biology labs prior to PSI’s
formal launch. Subsequent rows use t′ values of 2001/01/01, 2002/01/01, 2003/01/01, 2004/01/01, and 2005/01/01,
respectively. The learning model retains the same specification (random forest), features, and hyperparameters used
in our replication of the labs’ machine learning approach, with periodic retraining beginning from t′ as counterfactual
history accumulates. From t′ to 2008/12/31, we simulate allocations using the allocation model specified in each
column header, with θ̂ parameters estimated for the best-fitting model (UCB1+Time Discounting) from the 2005–
2008 Production Phase (see Appendix Tables D1–D4), effectively starting PSI’s second phase at t′. From 2009/01/01
to 2015/12/31, we use θ̂ parameters estimated for the best-fitting model (UCB1+Time Discounting) from the 2009–
2015 Biomedical Phase. The last row reports simulated rewards for 2005–2015 under the actual Pilot Phase (ended
by 2005). Additional statistics, including simulated trial distributions, characteristics, and outcomes, are in Appendix
Tables D9–D12. See Appendix Figures D8–D15 for visualizations of simulated rewards, trial characteristics, and
structure properties over time. All reported statistics are averages over three simulation runs per model. *Results for
NYSGRC should be interpreted with caution due to data quality concerns.

making in this phase, we know labs had limited trial data, did not use machine learning, and were

not subject to NIH production targets. Because this phase lacked a consistent decision structure,

we cannot reliably infer decision policies or simulate extensions of this phase. However, we can

simulate scenarios where the Pilot Phase is shortened or eliminated. Unlike switching to a different

allocation algorithm in later phases, shortening the Pilot Phase may be more difficult and costly,

as it would require labs to hire specialized personnel (e.g., bioinformaticians) earlier to establish

machine learning pipelines and enable structured decision making.

In the first scenario, we simulate outcomes assuming no Pilot Phase, with labs adopting machine

learning and the best-fitting policy from our inference exercise at the start of PSI in 2000 (for

JCSG, we also simulate using the Explore-Then-Commit policy, which outperforms the best-fitting

model). We then consider Pilot Phases lasting one (2000), two (2000–2001), three (2000–2002), or

four (2000–2003) years.
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Table 7 reports cumulative rewards. For JCSG, shorter Pilot Phases consistently improve out-

comes. Under UCB1 + Time Discounting, eliminating the Pilot Phase raises 2005–2015 rewards by

8%. Under Explore-Then-Commit, shortening the Pilot to one year raises rewards by 12%. Com-

bined, Explore-Then-Commit with a one-year Pilot yields a 43% increase relative to the best-fitting

policy and the actual Pilot Phase duration. Appendix Figures D9–D11 show that earlier adoption

of structured policies led JCSG to select different, and potentially more beneficial, trials during

2000–2004.

For other labs, however, shortening the Pilot Phase does not yield clear improvements. As shown

in Appendix Figures D9–D11, their 2000–2004 trial characteristics under shortened Pilot scenarios

resemble the historical data, suggesting their original Pilot Phase decisions were already similar to

later, more structured approaches.

7.3. Improved Information and Learning Models

In this set of simulations, we evaluate how additional training data and improved machine learning

models affect trial allocation. In the first scenario, we assume labs have access to the complete

observed trial history and know the data-generating process, P ∗
t (· |HT , cT )—even before running

their own trials. Although unrealistic, this “perfect information” case provides a useful benchmark.

Under perfect information and in the absence of nonstationarity, the Greedy allocation policy

without the Gumbel error term (i.e., Vijt = x̂ijt(p̂it,θθθ |Ht−1, ct)) should be optimal: one would simply

rank trials by expected reward and allocate in descending order. However, with nonstationarity the

problem becomes more complex. Allocations must account for time-varying success probabilities,

requiring predictions of each trial’s success probability on each future date and careful scheduling

to maximize long-term reward. In such cases, the Greedy policy without error may no longer

be optimal. Computing the true optimal policy remains computationally intensive, so instead

we compare two heuristic policies for each lab: the Greedy policy (without error) and the best-

performing policy from the first set of simulations (also excluding error).

In subsequent simulations, we reintroduce uncertainty by adding noise to the perfect-information

case. These scenarios are more realistic: even with substantial data and a strong understand-

ing of reward dynamics, it is unlikely that labs’ beliefs perfectly match the true data-generating
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Table 8 Simulated Rewards (2005–2015) Under Improved Information and Learning Models

Total Rewards

JCSG MCSG NESG NYSGRC*

Greedy Greedy Greedy Greedy

Perfect information 3,201,510 271,166 183,047 183,255
Perfect information, 0.1ϵ 3,208,912 274,479 183,261 174,526
Perfect information, 0.3ϵ 3,226,625 232,669 144,193 100,662
Perfect information, 0.5ϵ 3,202,628 152,950 83,904 75,785
Perfect information, 0.7ϵ 3,167,113 106,942 54,333 63,239

Explore-Then- UCB1+Time UCB1+Time UCB1+Time
Commit Discounting Discounting Discounting

Perfect information 3,228,878 175,215 89,638 90,837
Perfect information, 0.1ϵ 3,241,963 174,495 92,553 90,016
Perfect information, 0.3ϵ 3,209,321 169,961 87,987 88,727
Perfect information, 0.5ϵ 3,195,263 166,883 83,276 87,144
Perfect information, 0.7ϵ 3,209,596 166,671 78,854 82,279

Best-fitting model 1,803,448 142,065 80,182 60,405
Actual 1,791,494 121,220 80,385 56,486

Note: Under perfect information, each lab’s belief about a project’s success probability equals its true probability
(generated by model P ∗

t (·|HT , cT )). Learning models are not separately trained or updated during simulation. The
random noise term ϵ follows an i.i.d. standard Gumbel distribution across projects and periods. Additional statistics,
including simulated trial distributions, characteristics, and outcomes, are reported in Appendix Tables D13–D16. See
Appendix Figures D16–D17 for visualizations of simulated rewards over time. All other notes from Table 6 also apply.

process. To capture this, we reintroduce Gumbel error terms into the allocation model. These

represent random, unmodeled fluctuations in perceived project values and capture errors in trial

success predictions. By varying the magnitude of these errors, we assess how predictive inaccuracy

affects performance. These cases mimic settings where large-scale shared trial history databases

improve forecasting but learning remains imperfect. This analysis examines the potential benefits of

data-sharing policies and collective learning initiatives, though such efforts require more extensive

resources than modifying allocation algorithms or shortening pilot phases.

Table 8 reports cumulative rewards. Under perfect information, the Greedy policy substantially

outperforms the previously best-performing models, nearly doubling rewards across major labs by

concentrating resources on the highest-value projects. With small predictive errors of 0.1ϵ, similar

performance gains are still observed. However, as predictive error increases, the Greedy policy’s

robustness varies considerably across labs and often deteriorates rapidly, whereas the previously
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best-performing policies maintain stable outcomes close to their perfect-information benchmarks.

These results suggest that increasing data availability and predictive accuracy can yield substantial

gains. Yet, when high accuracy is difficult to achieve, bandit algorithms that explore beyond the

apparent best options remain more robust and effective strategies.

8. Discussion and Future Directions

This paper develops a policy inference framework to understand how real-world organizations nav-

igate exploration–exploitation trade-offs in sequential resource allocation. By combining granular

choice data with institutional knowledge, we infer the allocation policies most consistent with

observed behavior, separately identifying reward functions, learning models, and policy forms.

Unlike inverse reinforcement learning, which presumes optimality, or standard policy evaluation,

which requires a known policy, our framework uncovers the heuristics organizations actually use

and generates counterfactual insights into potential improvements.

Our empirical analysis leverages the NIH-funded Protein Structure Initiative, where research labs

conducted sequential trial allocations under extreme uncertainty. This setting provides an unusually

rich policy environment: labs operated under shared NIH oversight and standardized reporting

requirements, yet exhibited striking heterogeneity in resources and project portfolios. Mapping this

environment into a stochastic bandit framework highlights both the relevance of bandit models

and the importance of empirically motivated refinements, including correlated outcomes, evolving

project sets, and capacity constraints.

Our policy inference procedure recasts the high-dimensional, combinatorial problem of trial

allocation into a tractable likelihood-based framework by leveraging two key simplifications: pre-

computing perceived project-level success probabilities p̂it to bypass dynamic belief updating, and

introducing a threshold-based allocation algorithm that, under mild conditions, is equivalent to

the full combinatorial problem. This approach allows us to express choice probabilities in smooth

closed form, enabling maximum likelihood estimation of behavioral parameters without sacrificing

fidelity to the underlying decision process.
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Our policy inference analysis shows that combining theoretical structure with empirically moti-

vated refinements most accurately captures labs’ allocation behavior. In particular, UCB1 with

time-discounted exploration bonuses consistently provides the best in-sample and out-of-sample

fit, outperforming both other theoretically grounded models and reduced-form alternatives. Esti-

mated parameters indicate that labs valued structured exploration, prioritized recent projects, and

responded to evolving NIH priorities emphasizing biomedical impact.

Through counterfactual simulations, we demonstrate how inferred policies can guide actionable

recommendations. Adopting alternative policies could have yielded meaningful improvements in

cumulative rewards, and earlier implementation of structured decision-making could have delivered

additional performance gains. We further find that while more accurate reward beliefs enable

substantial improvements, purely exploitative strategies, such as Greedy, become fragile even under

modest belief errors. In contrast, exploration-based policies remain comparatively robust. These

results underscore both the potential and the limits of data-driven improvements in organizational

decision-making.

Taken together, our study establishes policy inference as a powerful approach for bridging algo-

rithm design and organizational practice in complex, uncertain environments. Nevertheless, several

limitations point to promising avenues for future research. First, our approach relies on highly gran-

ular data, which are often difficult to obtain without organizational support. Second, we cannot yet

explain why some algorithms perform well for certain decision-makers but not others, due to our

limited sample of decision-makers and lack of systematic data on decision-maker characteristics.

Third, we do not model how projects are nominated or added to the pool of options (or “arms”)—a

critical factor that could influence allocation outcomes. Expanding the analysis to broader coun-

terfactual project pools is constrained by our lack of domain expertise in identifying scientifically

worthy projects and the absence of reliable models of true reward dynamics for never-attempted

projects.

Additional important questions remain beyond the scope of our study, including the optimal

configuration of equipment, experimental procedures, and matching of labs to projects. We also
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do not assess whether the inferred reward weights were socially optimal. It is possible that using

different weights would lead to more numerous or impactful research outcomes, though defining

and measuring “more impactful” outcomes remains challenging in this context. In settings with

more objective outcome measures—such as pharmaceutical trials with clear revenue or health

metrics—such analyses may be more feasible.

Moreover, the set of allocation models we test is not exhaustive. Our framework can only distin-

guish between policies that produce observably different allocation patterns; if a lab uses a complex

algorithm whose choices resemble those of a simpler one, the two cannot be reliably distinguished.

Future work can extend our analysis by employing more advanced model selection techniques and

testing additional models. Finally, developing robust methods for policy evaluation in nonstation-

ary environments could improve the validity of simulation-based counterfactual analyses.

Despite these limitations, our framework provides an empirical foundation for understanding

and improving real-world organizational decision-making under uncertainty. We hope that future

work will address these challenges and further advance this understanding.

References

Ano LB, Martinez-de Albeniz V (2023) Inference of a firm’s learning process from product launches IESE

Business School Working Paper.

Auer P, Cesa-Bianchi N, Fischer P (2002) Finite-time analysis of the multiarmed bandit problem. Machine

Learning 47(2):235–256.

Babnigg G, Joachimiak A (2010) Predicting protein crystallization propensity from protein sequence. Journal

of Structural and Functional Genomics 11(1):71–80.

Berman HM, Gabanyi MJ, Kouranov A, Micallef DI, Westbrook J, Protein Structure Initiative network of

investigators (2017) Protein Structure Initiative—TargetTrack 2000-2017—all data files. URL https:

//zenodo.org/record/821654, accessed on June 25, 2019.

Brezzi M, Lai TL (2002) Optimal learning and experimentation in bandit problems. Journal of Economic

Dynamics and Control 27(1):87–108.



Zhuo: Exploitation vs. Exploration in Research Labs44

Chan AJ, Curth A, van der Schaar M (2022) Inverse online learning: Understanding non-stationary and reac-

tionary policies. International Conference on Learning Representations, URL https://openreview.

net/forum?id=DYypjaRdph2.

Chruszcz M, Wlodawer A, Minor W (2008) Determination of protein structures–A series of fortunate events.

Biophysical Journal 95(1):1–9.

Dimakopoulou M, Ren Z, Zhou Z (2021) Online multi-armed bandits with adaptive inference. Advances in

Neural Information Processing Systems 34:1939–1951.

Dud́ık M, Erhan D, Langford J, Li L (2014) Doubly robust policy evaluation and optimization. Statistical

Science 485–511.

Dud́ık M, Langford J, Li L (2011) Doubly robust policy evaluation and learning. arXiv preprint

arXiv:1103.4601 .

Farajtabar M, Chow Y, Ghavamzadeh M (2018) More robust doubly robust off-policy evaluation. Interna-

tional Conference on Machine Learning, 1447–1456.

Garivier A, Moulines E (2011) On upper-confidence bound policies for switching bandit problems. Interna-

tional Conference on Algorithmic Learning Theory, 174–188.

Gittins JC (1979) Bandit processes and dynamic allocation indices. Journal of the Royal Statistical Society:

Series B (Methodological) 41(2):148–164.

He X, An B, Li Y, Chen H, Guo Q, Li X, Wang Z (2020) Contextual user browsing bandits for large-scale

online mobile recommendation. Proceedings of the 14th ACM Conference on Recommender Systems,

63–72.

Hill R, Stein C (2025) Scooped! Estimating rewards for priority in science. Journal of Political Economy

133(3):000–000.
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Lattimore T, Szepesvári C (2020) Bandit Algorithms (Cambridge: Cambridge University Press).

March JG (1991) Exploration and exploitation in organizational learning. Organization science 2(1):71–87.

McCardle KF, Tsetlin I, Winkler RL (2018) When to abandon a research project and search for a new one.

Operations Research 66(3):799–813.

Ng AY, Russell S, et al. (2000) Algorithms for inverse reinforcement learning. International Conference on

Machine Learning, 663–670.



Zhuo: Exploitation vs. Exploration in Research Labs46

Nguyen-Thanh N, Marinca D, Khawam K, Rohde D, Vasile F, Lohan ES, Martin S, Quadri D

(2019) Recommendation system-based upper confidence bound for online advertising. arXiv preprint

arXiv:1909.04190 .

NIGMS (2004) Large-scale centers for the Protein Structure Initiative. URL https://grants.nih.gov/

grants/guide/rfa-files/RFA-GM-05-001.html, accessed on May 31, 2022.

NIGMS (2008) Protein Structure Initiative (Pilot Phase) fact sheet. URL http://www.nigms.nih.gov/

Initiatives/PSI/Background/PilotFacts.htm, accessed the Internet Archive capture from Oct 1,

2008.

NIGMS (2009) Concept clearance: High-throughput structural biology URL https://www.nigms.nih.gov/

News/Reports/council_concept_clearance_2009, accessed the Internet Archive capture from May

23, 2009.

Ortner R, Ryabko D, Auer P, Munos R (2012) Regret bounds for restless Markov bandits. International

Conference on Algorithmic Learning Theory, 214–228.

Pakes A (1986) Patents as options: Some estimates of the value of holding european patent stocks. Econo-

metrica 54(4):755–784.

Petsko GA (2007) An idea whose time has gone. Genome Biology 8(6):1–3.

Price WN, Chen Y, Handelman SK, Neely H, Manor P, Karlin R, Nair R, Liu J, Baran M, Everett J,

et al. (2009) Understanding the physical properties that control protein crystallization by analysis of

large-scale experimental data. Nature Biotechnology 27(1):51–57.

Russo D, Van Roy B, Kazerouni A, Osband I, Wen Z (2017) A tutorial on Thompson sampling. arXiv

preprint arXiv:1707.02038 .

Rust J (1987) Optimal replacement of GMC bus engines: An empirical model of Harold Zurcher. Economet-

rica 55(5):999–1033.

Si N, Zhang F, Zhou Z, Blanchet J (2023) Distributionally robust batch contextual bandits. Management

Science 69(10):5772–5793.

Simchi-Levi D, Wang C (2023) Multi-armed bandit experimental design: Online decision-making and adap-

tive inference. International Conference on Artificial Intelligence and Statistics, 3086–3097.



Zhuo: Exploitation vs. Exploration in Research Labs 47

Slabinski L, Jaroszewski L, Rodrigues AP, Rychlewski L, Wilson IA, Lesley SA, Godzik A (2007a) The chal-

lenge of protein structure determination–lessons from structural genomics. Protein Science 16(11):2472–

2482.

Slabinski L, Jaroszewski L, Rychlewski L, Wilson IA, Lesley SA, Godzik A (2007b) XtalPred: A web server

for prediction of protein crystallizability. Bioinformatics 23(24):3403–3405.

Thompson WR (1933) On the likelihood that one unknown probability exceeds another in view of the

evidence of two samples. Biometrika 25(3/4):285–294.

Van Montfort RL, Workman P (2017) Structure-based drug design: Aiming for a perfect fit. Essays in

Biochemistry 61(5):431–437.

Varian HR, et al. (2006) Revealed preference. Samuelsonian economics and the twenty-first century 99–115.

Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, Graham BS, McLellan JS (2020) Cryo-

EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367(6483):1260–1263.

Zhou D, Tomlin C (2018) Budget-constrained multi-armed bandits with multiple plays. Proceedings of the

AAAI Conference on Artificial Intelligence, volume 32.



e-companion to Zhuo: Exploitation vs. Exploration in Research Labs ec1

Appendix A: Data and Variable Construction

A.1. Project Rationale/NIH Evaluation Metrics

Several variables capture a lab’s observable rationale for allocating a trial to a project, and these variables

correspond to the NIH’s evaluation metrics for the labs’ productivity, among which a key metric is the

novelty of the project. The variable noveli is a binary and is equal to 1 if the labs cited novelty as a

reason to allocate trials to project i in the TargetTrack database. Another key NIH evaluation metric is the

biomedical importance of the project. The variable biomedi is a binary and is equal to 1 if the labs cited

biomedical importance as a reason to allocate trials to project i in the database.The TargetTrack database

contains textual descriptions of why labs allocated trials to a project. The relevant fields are populated for

84% of projects at the four major labs. Construction of noveli and biomedi is based on keywords in those

descriptions. The following paragraphs describe the variable construction process.

First, we use keywords to identify projects that were novel and/or biomedically important. TargetTrack

contains a variable called targetCategoryList where labs give projects categorical labels such as “biomedical,”

“structural coverage,”21 and so on. It also contains a text field called targetRationale where labs give textual

descriptions of projects’ rationales. Whenever targetCategoryList and targetRationale contain the following

keywords, we set noveli equal to 1:

big,22 coverage of protein universe, diversity, first structure of class, low sequence identity, mega,23 metage-

nomic, new fold, no structural information, no structure, numer of homologs,24 pfam, remote homologs,

structural coverage, structural template for unsolved, structure coverage, unsolved families, without any

solved structures, without structure.

Whenever targetCategoryList and targetRationale contain the following keywords, we set biomedicali

equal to 1:

21“Structural coverage” means the project is in part of the structure space with no or few published structures.

22 BIG and MEGA domain families were defined by the PSI-2 Target Selection Committee as having high value for
extensive coverage. These families contained hundreds to tens of thousands of members and many subfamilies which
could not be modeled well due to a lack of structural coverage.

23Same as above.

24This typo occurs in the raw data.
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activator, adhesion, antibiotic, binding, biochemistry, biological interest, biomedical, cascade, catalyze, cell

development, community nominated, communit-nominated,25 community-nominated, community request,

conserved, disease, coronavirus, drug, drug development, drug target, effector, enzyme, essential, function,

functional studies, functional, gpcr, high value, hig-value,26 hiv, homeostasis, host, immune, immunity, infec-

tion, infectious, inhibitor, interaction, interact, legionella, medical school, metabolism, mitochondria, model

system, operon, parkinsons, partnership, pathogen, pathology, pathway, phosphatase, pneumonia, protein

family of high biological importance, reagent, receptor, resistance, resistant, salmonella, school of medicine,

secret, sensor, shen lab, shen lab, shen selection, stem cell, substrate, syndrome, synthesis, t-cell, t cell, ther-

apeutic, thorson lab, toxoplasma, transcription, transport, tuberculosis, tumor, university, vaccine, vibrio,

virulence, virulent.

Second, we use labs’ selection protocols of projects for additional information. TargetTrack contains a

field where labs describe the protocols they used to conduct each stage of the trials. One type of protocol

is the selection protocol. For example, 15 projects were selected because of the protocol “TSel 101,” which

states “These proteins are important for cell development.” We read the descriptions associated with each

selection protocol and manually classified whether each protocol was “novel” and/or “biomedical.”27 Then

we set noveli equal to 1 if the project was selected due to a “novel” protocol. We set biomedicali equal to 1

if the project was selected due to a “biomedical” protocol.

Lastly, TargetTrack has a field that contains a list of reference IDs of each molecule in large-scale bioin-

formatics databases.28 These reference IDs may yield additional information. Whenever the list of reference

IDs contains BIG and MEGA reference IDs,29 We set noveli equal to 1.

When the labs cited a project i as being novel, they often emphasized that there were no or few already

published structures in the same protein family as i. We therefore construct prevStructiy, a continuous

variable (subscripted with the letter y) that captures the number of published structures in the same protein

25Same as above.

26Same as above.

27The manual classification is available upon request.

28These reference IDs include, but are not limited to, the molecule’s IDs in the Protein Data Bank (PDB), UniProt,
and the National Center for Biotechnology Information (NCBI) database.

29See footnote 22.
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family as i year by year. To construct this variable, we first pull from UniProt the list of protein families pfami

associated with molecule i. We then obtain a mapping of each protein family to its associated structures

from EMBL-EBI (2021) and the structures’ publication dates (we take the structure’s deposition date to the

PDB as the publication date) from Varadi et al. (2020). Merging the datasets results in prevStructiy. If i is

associated with multiple protein families, we take the average of the number of already published structures

in each protein family associated with i.

As an additional proxy for the biomedical importance of a molecule, we look into the number of publications

related to the molecule in UniProt, including structures and other types of publications. We construct

prevPubiy, a continuous variable that captures the number of publications on molecule i year by year.

Additional NIH evaluation metrics correspond to whether the project was related to human beings, eukary-

otes,30 and the cell membrane. The variable humani captures how similar molecule i is to any molecules

from human beings. When a lab worked on a “human” molecule, often the molecule was actually from bac-

teria but was very similar to a molecule from human beings and was much easier than the human molecule.

Therefore, the right construction for humani is molecule i’s degree of similarity to human molecules rather

than being a human molecule itself. We learned this from a conversation with an NIH program officer in

charge of the PSI program. To construct this variable, we search each molecule i against all UniProt protein

sequences in the Homo sapiens (human) species (UniProt (2021d)). From the search results, we take the

maximal percentage identity of i to any human molecule as the variable humani. Due to potentially large

number of search results, the search algorithm DIAMOND (Buchfink et al. (2015, 2021)) by default cuts off

results at evalue= 0.001. evalue is a well-understood metric for search quality in this field. If there are no

search results meeting the cutoff, we let humani = 0. For details on how to do the DIAMOND search, please

see Appendix A.3.

The variable eukaryotei likewise captures how similar molecule i is to any molecules from eukaryotes. To

construct this variable, we search each molecule i against all UniProt protein sequences in the Eukaryota

superkingdom (UniProt (2021c)). From the search results, we take the maximal percentage identity of i to

any eukaryotic molecule as the variable eukaryotei. Due to potentially large number of search results, the

search algorithm DIAMOND (Buchfink et al. (2015, 2021)) by default cuts off results at evalue= 0.001. If

there are no search results meeting the cutoff, we let eukaryotei = 0.

30See definition in footnote 3.



ec4 e-companion to Zhuo: Exploitation vs. Exploration in Research Labs

Table A1 Funding Opportunity Announcements (FOA) Tied To PSI

ID Title Year

RFA-GM-99-009 PILOT PROJECTS FOR THE PROTEIN STRUCTURE INITIATIVE 1999
PA-99-116 PROTEIN STRUCTURE INITIATIVE 1999
PA-99-117 PROTEIN STRUCTURE INITIATIVE – SBIR/STTR 1999
RFA-GM-00-006 PILOT PROJECTS FOR THE PROTEIN STRUCTURE INITIATIVE 2000
RFA-GM-05-001 LARGE-SCALE CENTERS FOR THE PROTEIN STRUCTURE INITIATIVE 2004
RFA-GM-05-002 SPECIALIZED CENTERS FOR THE PROTEIN STRUCTURE INITIATIVE 2004
RFA-GM-06-004 Structural Genomics Knowledgebase (U01) 2006
RFA-GM-10-004 PSI:Biology Knowledgebase (U01) 2009
RFA-GM-10-005 Centers for High-Throughput Structure Determination (U54) 2009
RFA-GM-10-006 Centers for Membrane Protein Structure Determination (U54) 2009
RFA-GM-10-007 Consortia for High-Throughput-Enabled Structural Biology Partnerships (U01) 2009
PAR-10-214 High-Throughput-Enabled Structural Biology Research (U01) 2010
PAR-11-176 High-Throughput-Enabled Structural Biology Partnerships (U01) 2011

The variable membranei is a binary and is equal to 1 if molecule i is related to the cell membrane. We

set this binary variable = 1 if project i’s UniProt information contains the word “membrane.”

A.2. Lab Funding

Funding information comes from two sources. First, the NIH released a series of funding opportunity

announcements (FOAs) directly tied to the PSI program (NIH 2019), which allows us to search directly

all grants associated with those FOAs on NIH RePORT database (NIH 2021). Table A1 shows the full list

of FOAs. Second, labs sometimes received supplementary funds from the NIH, so we also perform a direct

search of the labs’ names and abbreviations using RePORT’s advanced search functionality to obtain data

on each labs’ supplementary funding. The search term we used was (quotation marks included):

“[lab full name]” OR “[lab abbreviation]”

We then aggregate each lab’s sum of research grants by year from the search results.

A.3. Matching Projects to UniProt Molecule Information

As a preliminary to using the UniProt data, we match projects from the TargetTrack database to their

molecule information on UniProt through two methods.

TargetTrack has a field containing a list of reference IDs of each molecule i in large-scale bioinformatics

databases. These reference IDs include, but are not limited to, the molecule’s IDs in the Protein Data

Bank (PDB), UniProt, and the National Center for Biotechnology Information (NCBI) database. When the

UniProt ID of the molecule is available in this field, the mapping is direct. We also use the following ID
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types, which easily convert into UniProt molecule ID through UniProt’s ID Mapping service (Huang et al.

2011, UniProt 2021a):

• PDB ID: a molecule’s ID in the Protein Data Bank (PDB), a database for 3D structures.

• P REFSEQ AC: a molecule’s ID in NCBI’s RefSeq protein database.

• EMBL: a molecule’s corresponding gene’s ID in the European Molecular Biology Laboratory

(EMBL)/GenBank/DNA Data Bank of Japan (DDBJ) CDS database.

• P ENTREZGENEID: a molecule’s corresponding gene’s ID in GeneID (Entrez Gene) database.

• P GI: a molecule’s GI number assigned by NCBI.

When the first method fails to find a match (usually due to an entirely missing reference ID field or obsolete

records in the relevant databases), we use a second method: directly searching the molecule’s sequence of

amino acids against all protein sequences in UniProt.31 We perform this search using DIAMOND (Buchfink

et al. 2015, 2021), a very fast algorithm for searching similar sequences. The diamond command we used

was:

diamond blastp -d [database name] -q [input sequences in .fasta]

-o [output in .csv] -f 6 qseqid qlen sseqid slen evalue bitscore pident length

-b4.0 --top 5

It produces search results with the following variables:

• qseqid : query sequence’s identifier (the full sequence in this case).

• qlen: query sequence’s length.

• sseqid : search result’s UniProt ID.

• slen: search result’s length.

• evalue: the number of expected hits of similar quality that could be found just by chance in a random

database of the same size. E-value is a commonly used measure for the degree of similarity between the query

sequence and the search result.

• bitscore: the required size of a sequence database in which the current match could be found just by

chance. Bit score does not depend on the size of the database and is a common alternative measure for the

degree of similarity between the query sequence and the search result.

31Downloadable in .fasta format at https://www.uniprot.org/downloads.
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• pident : percentage of identical matches between the query sequence and the search result over the

alignment length.

• length: the alignment length between the query sequence and the search result.

If the query sequence’s best match search result, determined by the e-value, a standard metric for assessing

sequence similarity, has at least 95% pident and the alignment length, length, is at least 67% of both qlen

and slen, we map the query sequence to the result sequence’s UniProt ID.

We were able to match 262,984 (78.4%) of the 335,553 projects to their UniProt entries through the ID

mapping method and match an additional 58,593 (17.5%) projects through the direct search. Overall, we were

able to map 321,577 (95.8%) projects to their UniProt entries. We then used UniProt’s programmatic access

for individual entries (UniProt (2021b)) to pull each molecule’s information from UniProt. We successfully

pulled this information for 319,986 (95.4%) projects.

A.4. Data Glossary

This paper leverages hundreds of project characteristics extracted from diverse sources, primarily used to

replicate labs’ machine learning models for predicting trial success probabilities and to model how nature

generates true trial success probabilities. The following data glossary provides a comprehensive overview of

these variables.

* Variable is used as a feature in training P̂ , a best-effort replication of the machine learning models used

by the labs to predict trial success probabilities.

† Variable is used as a feature in training P ∗, a machine learning model representing how nature generates

true trial success probabilities.

Please see Appendix B for these models.

Table A2: Data Glossary

Variables Description
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[4 cap letters then 6 digits]i*† Amino acid attributes from the AAindex database (Kawashima et al.
(2007)). Each attribute had an identifier that had four capital letters
followed by six digits. We started with the 567 attributes in AAin-
dex1, and then normalized and clustered them to a set of around
30 attribute classes as in Babnigg and Joachimiak (2010). We used
scikit-learn’s implementation of affinity propagation clustering, which
automatically picked 34 clusters. We then kept the cluster center of
each class. For each cluster center attribute, we calculated the local
average value, the local minimum, and the local maximum of the sum
of the attribute in a seven-amino acid sliding window for molecule i
as in Babnigg and Joachimiak (2010). This resulted in 102 variables.

[consortium abbreviation]it*† Binary variable = 1 if trial ji was conducted by the given consortium
at time t. Only consortia with more than 70 observations of projects
in the TargetTrack database have their corresponding variables. 36
variables in total.

[gene]i† Binary variable = 1 if molecule i is coded for by the given gene. From
UniProt. We only include genes that have occurred more than 200
times in the data.

[keyword]i† Binary variable = 1 if molecule i is associated with the given key-
word in UniProt. Examples of keywords include “Alzheimer disease,”
“Antioxidant,” “RNA-binding,” “Viral envelope protein.” We only
include keywords that have occurred more than 200 times in the data
and remove the keyword “3D-structure” because this is the outcome.

[superkingdom-phylum]i*† Binary variable = 1 if molecule i comes from an organism in the
specific superkingdom and phylum. From UniProt. Due to the large
number of species molecules represented in TargetTrack, we do not
go down the UniProt taxonomy below phylum. 81 variables in total.

aminoAcid [X]i*† Counts the number of times amino acid “X” is in molecule i. 20
variables for each of amino acids A, C, D, E, F, G, H, I, K, L, M, N, P,
Q, R, S, T, V, W, Y. Calculated using Biopython’s ProteinAnalysis
function from Bio.SeqUtils.ProtParam module. Contents of certain
amino acids are linked to more successes of trials (Price et al. (2009),
Babnigg and Joachimiak (2010), Jahandideh et al. (2014)).

aminoAcidPercent [X]i*† Calculate the amino acid “X” content in molecule i in percentages. 20
variables for each of amino acids A, C, D, E, F, G, H, I, K, L, M, N, P,
Q, R, S, T, V, W, Y. Calculated using Biopython’s ProteinAnalysis
function from Bio.SeqUtils.ProtParam module. Contents of certain
amino acids are linked to more successes of trials (Price et al. (2009),
Babnigg and Joachimiak (2010), Jahandideh et al. (2014)).

biomedicali*† Binary variable = 1 if project i was biomedically important. See
Appendix A.1 for variable construction.

eukaryotei*† Maximal percentage identity of molecule i to any eukaryotic molecule.
To construct this variable, we search each molecule i against all
UniProt protein sequences in the Eukaryota superkingdom (UniProt
(2021c)). From the search results, we take the maximal percentage
identity of i to any eukaryotic molecule as the variable eukaryotei.
Due to potentially large number of search results, the search algorithm
DIAMOND (Buchfink et al. (2015, 2021)) by default cuts off results
at evalue= 0.001. evalue is a well-understood metric for search qual-
ity in this field. If there are no search results meeting the cutoff, we
let eukaryotei = 0.
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exposedAminoAcid [X]i*† Counts the number of times amino acid “X” is on the predicted
exposed surface of molecule i. 20 variables for each of amino acids A,
C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y. Exposed sur-
face was predicted using the NetSurfP (Klausen et al. (2019)) program
with the cutoff of relative solvent accessibility (rsa) > 0.25. Contents
of certain amino acids on the exposed surface of the molecule are
linked to more successes of trials (Price et al. (2009), Babnigg and
Joachimiak (2010), Jahandideh et al. (2014)).

exposedAminoAcidPercent [X]i*† Calculates the amino acid “X” content on the predicted exposed sur-
face of molecule i in percentages. 20 variables for each of amino acids
A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y. Exposed
surface was predicted using the NetSurfP (Klausen et al. (2019)) pro-
gram with the cutoff of relative solvent accessibility (rsa) > 0.25. Con-
tents of certain amino acids on the exposed surface of the molecule
are linked to more successes of trials (Price et al. (2009), Babnigg and
Joachimiak (2010), Jahandideh et al. (2014)).

extinctCoeffReduced i*† Molar extinction coefficient of molecule i with reduced cys-
teines. Calculated using Biopython’s ProteinAnalysis function from
Bio.SeqUtils.ProtParam module. Slabinski et al. (2007b) used the
extinction coefficient as a feature to predict project success.

extinctCoeffOxidized i*† Molar extinction coefficient of molecule i with disulfid bridges.
Calculated using Biopython’s ProteinAnalysis function from
Bio.SeqUtils.ProtParam module. Slabinski et al. (2007b) used the
extinction coefficient as a feature to predict project success.

funding ly Total sum of research grants consortium l received from NIH in year
y. See Appendix A.2 for variable construction.

gapsi*† The average number of insertions in molecule i’s alignment compared
to homologs in UniProt protein sequences. Computed by search-
ing sequence i against UniProt protein sequences using DIAMOND
(Buchfink et al. (2015, 2021)). The output variable gaps captures
this value. Insertions were included as a feature in Slabinski et al.
(2007a,b), Jaroszewski et al. (2008), Jahandideh et al. (2014).

gapOpeni*† The average number of insertion openings in the alignment compared
to homologs in UniProt protein sequences. Computed by search-
ing sequence i against UniProt protein sequences using DIAMOND
(Buchfink et al. (2015, 2021)). The output variable gapOpen captures
this value. Insertions were included as a feature in Slabinski et al.
(2007a,b), Jaroszewski et al. (2008), Jahandideh et al. (2014).

gravyIndexi*† Grand average of hydropathicity index (GRAVY) of molecule i, used
to represent the hydrophobicity value of a molecule. Calculated using
Biopython’s ProteinAnalysis function from Bio.SeqUtils.ProtParam
module. Hydrophobicity is a key determinant of success of trials
(Slabinski et al. (2007a,b), Jaroszewski et al. (2008), Price et al.
(2009), Babnigg and Joachimiak (2010), Jahandideh et al. (2014)).

hasPrevSuccessikt*† Binary variable = 1 if at least one previous trial on molecule i success-
fully completed stage k before date t. For †, two versions of the model
were trained: one including variables capturing previous successes,
failures, publications, and structures in the same protein families, and
one excluding them.



e-companion to Zhuo: Exploitation vs. Exploration in Research Labs ec9

hasPrevFailureikt*† Binary variable = 1 if at least one previous trial on molecule i failed
at stage k before date t. For †, two versions of the model were trained:
one including variables capturing previous successes, failures, publica-
tions, and structures in the same protein families, and one excluding
them.

humani*† Maximal percentage identity of molecule i to any human molecule. To
construct this variable, we search each molecule i against all UniProt
protein sequences in the Homo sapiens (human) species (UniProt
(2021d)). From the search results, we take the maximal percentage
identity of i to any human molecule as the variable humani. Due to
potentially large number of search results, the search algorithm DIA-
MOND (Buchfink et al. (2015, 2021)) by default cuts off results at
evalue= 0.001. evalue is a well-understood metric for search quality
in this field. If there are no search results meeting the cutoff, we let
humani = 0.

instabilityIndexi*† Instability index of molecule i, which is an estimate of the stability of
the protein in a test tube. Calculated using Biopython’s ProteinAnal-
ysis function from Bio.SeqUtils.ProtParam module. Instability Index
was included as a feature in Slabinski et al. (2007a,b), Jaroszewski
et al. (2008), Jahandideh et al. (2014).

isoelectricPointi*† Isoelectric point of molecule i. Calculated using Biopython’s Pro-
teinAnalysis function from Bio.SeqUtils.ProtParam module. Isoelec-
tric point is a key determinant of success of trials (Slabinski et al.
(2007a,b), Jaroszewski et al. (2008), Price et al. (2009), Babnigg and
Joachimiak (2010), Jahandideh et al. (2014)).

membranei*† Binary variable = 1 if project i’s UniProt information contains the
word “membrane.”

molecularWeighti*† Molecular weight of molecule i, calculated using Biopython’s Protein-
Analysis function from Bio.SeqUtils.ProtParam module.

noveli*† Binary variable = 1 if project i was novel. See Appendix A.1 for
variable construction.

p∗i,k′,tk′ † Predicted probability of success for stage k′ of a trial for project i,
which started in period tk′ . When predicting the probability of success
for stage k, the values of p∗i,k′,tk′ for all earlier stages (k′ < k) are
used as features.

percentCoili*† Predicted percentage of coil secondary structure in molecule i. Pre-
dicted using the NetSurfP (Klausen et al. (2019)) program. Secondary
structure features were used in Slabinski et al. (2007a,b), Jaroszewski
et al. (2008), Jahandideh et al. (2014).

percentCoiledCoili*† Percentage of coiled-coil regions in molecule i from UniProt. Coiled-
coil regions were used in Slabinski et al. (2007a,b), Jaroszewski et al.
(2008), Price et al. (2009), Babnigg and Joachimiak (2010), Jahan-
dideh et al. (2014).

percentDisordered i*† Predicted percentage of disordered region in molecule i. Predicted
using the NetSurfP (Klausen et al. (2019)) program. Disordered
region was used as a feature in Slabinski et al. (2007a,b), Jaroszewski
et al. (2008), Price et al. (2009), Babnigg and Joachimiak (2010),
Jahandideh et al. (2014).
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percentDisorderedUniprot i*† Percentage of disordered region in molecule i from UniProt. Dis-
ordered region was used as a feature in Slabinski et al. (2007a,b),
Jaroszewski et al. (2008), Price et al. (2009), Babnigg and Joachimiak
(2010), Jahandideh et al. (2014).

percentExposed i*† Predicted percentage of amino acids on the exposed surface of
molecule i. Exposed surface was predicted using the NetSurfP
(Klausen et al. (2019)) program with the cutoff of relative sol-
vent accessibility (rsa) > 0.25. Extent of the exposed surface of the
molecule are linked to more successes of trials (Price et al. (2009),
Babnigg and Joachimiak (2010), Jahandideh et al. (2014)).

percentHelix i*† Predicted percentage of helix secondary structure in molecule i. Pre-
dicted using the NetSurfP (Klausen et al. (2019)) program. Secondary
structure features were used in Slabinski et al. (2007a,b), Jaroszewski
et al. (2008), Price et al. (2009), Babnigg and Joachimiak (2010),
Jahandideh et al. (2014).

percentLowComplexity i*† Predicted percent low-complexity regions in molecule i. Computed
using the SEG program (Wootton (1994)). Low-complexity regions
were used as features in Slabinski et al. (2007a,b), Jaroszewski et al.
(2008).

percentSignalPeptidei*† Percentage of signal peptide in molecule i. From UniProt. Molecules
containing signal peptides have very low chances of success, as
stated by Slabinski et al. (2007a,b), Price et al. (2009), Babnigg and
Joachimiak (2010), Jahandideh et al. (2014).

percentStrand i*† Predicted percentage of strand secondary structure in molecule i. Pre-
dicted using the NetSurfP (Klausen et al. (2019)) program. Secondary
structure features were used in Slabinski et al. (2007a,b), Jaroszewski
et al. (2008), Price et al. (2009), Babnigg and Joachimiak (2010),
Jahandideh et al. (2014).

percentTransmembraneHelices i*† Percentage of transmembrane helices in molecule i. From UniProt.
Transmembrane helices were used as a feature in Slabinski et al.
(2007a,b), Jaroszewski et al. (2008), Price et al. (2009), Babnigg and
Joachimiak (2010), Jahandideh et al. (2014) .

pfami A list of protein families associated with molecule i, from UniProt
(UniProt (2021b)).

prevPubiy*† Number of publications on molecule i by the start of year y, from
UniProt (UniProt (2021b)). For †, two versions of the model were
trained: one including variables capturing previous successes, failures,
publications, and structures in the same protein families, and one
excluding them.
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prevStructiy*† Number of already published structures in the same protein families
associated with molecule i by the start of year y. To construct this
variable, we first pull from UniProt the list of protein families pfami

associated with molecule i. We then obtain a mapping of each pro-
tein family to its associated structures from EMBL-EBI (2021) and
the structures’ publication dates (we take the structure’s deposition
date to the PDB as the publication date) from Varadi et al. (2020).
Merging the datasets results in prevStructiy. If i is associated with
multiple protein families, we take the average of the number of already
published structures in each protein family associated with i. For †,
two versions of the model were trained: one including variables cap-
turing previous successes, failures, publications, and structures in the
same protein families, and one excluding them.

prevSuccessesikt*† Number of previous trials on molecule i that have successfully com-
pleted stage k before date t. For †, two versions of the model were
trained: one including variables capturing previous successes, failures,
publications, and structures in the same protein families, and one
excluding them.

prevTrials ikt*† Number of previous trials on molecule i that have reached stage k
before date t. For †, two versions of the model were trained: one includ-
ing variables capturing previous successes, failures, publications, and
structures in the same protein families, and one excluding them.

refId i A list of reference IDs of molecule i in TargetTrack, used to map i to
its information in UniProt.

seqi Sequence representation of molecule i’s amino acids, unique identifier
of project i.

seqLengthi*† The number of amino acids in molecule i.

simPrevProjit The maximal degree of similarity between project i and all previ-
ously attempted projects at time t, measured by the bit score (see
Appendix A.3 for the definition of bit score). Computed by searching
sequence i against all sequences attempted before time t using DIA-
MOND (Buchfink et al. (2015, 2021)). The maximum of the output
variable bitscore among research results was used as simPrevProj it.

surfaceRuggedness i*† Surface ruggedness of molecule i, defined by the total accessible sur-
face of molecule i divided by the accessible surface predicted based
on molecular mass. The total accessible surface of the molecule i is
calculated by summing the predicted absolute solvent accessibility of
each amino acid from NetSurfP (Klausen et al. (2019)). The accessi-
ble surface predicted based on molecular mass is calculated using the
formula 6.3(molecularMass)0.73 (Miller et al. (1987)). Jahandideh
et al. (2014) used this variable as a feature.

trialId The trial ID of a project-trial in the TargetTrack database. Combined
with the sequence, this variable uniquely identifies a project-trial in
TargetTrack.

V̂ arpit The variance of the predicted probabilities of trial success for project
i on day t, calculated across decision trees. See Appendix B for con-
struction.

Yi,trialId,t Binary variable equal to 1 if trial trialId of project i on date t was
successful, and 0 if it failed.
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Yi,trialId,k,t Binary variable = 1 if intermediate stage k of trial trialId of project
i on date t was successful. Yi,trialId,0,t = 1 if DNA was success-
fully cloned. Yi,trialId,1,t is only defined when Yi,trialId,0,t = 1 and is
equal to 1 if protein was successfully expressed. Yi,trialId,2,t is only
defined when Yi,trialId,0,t = 1 and Yi,trialId,1,t = 1 and is equal to 1
if protein was successfully purified. Yi,trialId,3,t is only defined when
Yi,trialId,0,t, Yi,trialId,1,t, Yi,trialId,2,t = 1 and is equal to 1 if protein
was successfully crystalized for X-ray crystallography or prepared for
NMR or cryo-EM. Yi,trialId,4,t is only defined when all previous stages
were successful and is equal to 1 if the structure was successfully pro-
duced and deposited to the Protein Data Bank (PDB) for publication.

yeari,trialId,k,t† The year in which stage k of trial trialId of project i started. For
NYSGRC, this variable is set to 0 due to data quality issues related
to date reporting for this lab.

Appendix B: Training Machine Learning Models to Predict Trial Success
Probabilities

This paper employs two models for predicting trial success probability. The first, P̂t, captures how labs

formed beliefs about these probabilities as they accumulated trial outcome data—a model of their learning

process. While P̂t aims to provide an unbiased estimate of the labs’ beliefs, it does not necessarily produce

an unbiased estimate of the true probability of trial success. Our implementation of P̂t closely follows the

machine learning approach described by the labs in their published journal articles.

The second model, P ∗
t , represents the true data generating process of trial success probability Pt and is

used to simulate counterfactual outcomes. Training P ∗
t differs from training P̂t because P

∗
t needs to produce

an unbiased estimate of the true probability of trial success. Consequently, our implementation of P ∗
t deviates

from P̂t in several ways to correct potential biases and improve upon the machine learning models described

by the labs.

In this appendix, we first explain the outcome variable used in model training. Then, we detail our

implementation of P̂t before discussing the ways in which our implementation of P ∗
t deviates from it.

B.1. Observed Trial Outcomes

The main observed trial outcome is whether the trial successfully produced a structure. We define a binary

variable Yi,trialId,t to denote the success or failure of trial trialId of project i on day t, where Yi,trialId,t = 1

indicates a successful trial. We also observe intermediate outcomes: the success or failure of individual stages

within each trial. A trial progresses through multiple well-defined sequential stages, including cloning the

molecule’s DNA, purifying the protein, and studying its structure using X-ray crystallography (among other
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methods). A trial is considered successful only upon completion of all stages. We define a binary variable

Yi,trialId,k,t to indicate the success or failure of stage k of trial trialId of project i on day t, where k ∈ 0,1,2,3,4.

The variables are defined as follows: Yi,trialId,0,t = 1 if DNA was successfully cloned. Yi,trialId,1,t is defined only

when Yi,trialId,0,t = 1 and is equal to 1 if the protein was successfully expressed. Yi,trialId,2,t is defined only

when Yi,trialId,0,t = 1 and Yi,trialId,1,t = 1 and is equal to 1 if the protein was successfully purified. Yi,trialId,3,t

is defined only when Yi,trialId,0,t = 1, Yi,trialId,1,t = 1, and Yi,trialId,2,t = 1, and is equal to 1 if the protein

was successfully prepared for studying its structure (through X-ray crystallography, NMR, or cryo-EM).

Yi,trialId,4,t is defined only when all previous stages were successful and is equal to 1 if the structure was

successfully produced and deposited to the Protein Data Bank (PDB) for publication.

We predict the success of a trial stage by stage using these intermediate, stage-specific outcomes, rather

than using the final trial outcome as the outcome variable for our prediction models. We adopt this approach

for two primary reasons: first, the final trial success rate in the dataset is low (1.6%), leading to a significant

class imbalance; second, the labs themselves focused on predicting stage-specific outcomes.

B.1.1. Implementation of P̂t Our implementation of P̂t fits stage-specific models to leverage informa-

tion from intermediate stage outcomes. Given that each trial proceeds through multiple sequential stages,

the overall probability of trial success is modeled as the product of the success probabilities of each stage:

pi,trialId,t =
∏4

k=0 pi,trialId,k,t. The intermediate outcomes Yi,trialId,k,t provide valuable information for predict-

ing future trials’ success probabilities at stage k (pi,trialId,k,t). To replicate each lab’s belief updating process

regarding success probability at each stage, we train a chronological sequence of machine learning models.

Due to computational constraints, we train a model quarterly between 2005 and 2015, rather than daily.

For a given quarter q(t) and each stage k ∈ {0,1,2,3,4}, the training set Hk,q(t)−1 comprises project-trial

outcomes Yi,trialId,k,t at stage k realized before quarter q(t), along with their characteristics. The project-trial

characteristics used as features for model training and predicting labs’ beliefs fall into three categories:32

• Physicochemical properties of molecule i based on scientific reasoning. These variables were identified

by the series of journal articles the labs published and were quite similar across labs and time.

• Other characteristics of project i, for example, novelty, biomedical importance, and the number of prior

publications on molecule i.

32Please see Appendix A.4 for the full list of variables used.
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• Past successes and failures of project i at stage k.

Then, for the given quarter q(t) and each of the stages k = 0,1,2,3,4, we fit a random forest model

P̂k,q(t)(· |Hk,q(t)−1, ct) using RandomForestClassifier from python package scikit-learn. Random forest

is an ensemble33 machine learning method. The algorithm constructs a large number of decision trees at

training time. Each decision tree is a learning model that aims to find the project-trial characteristics

predictive of success/failure in the training set. When it comes to prediction, the trained random forest

classifier P̂k,q(t)(· |Hk,q(t)−1, ct) would pool individual trees and average predicted values of {p̂(ntree)
ikt } from

individual trees as the final output. Jahandideh et al. (2014) set the number of trees in the random forest to

1000, which we also adopted in our previous draft. In this draft, however, we reduce the number to 100 due

to computational constraints.

Decision trees and random forests are known for often overfitting without regularization. To avoid over-

fitting, we regularize by restricting the hyperparameters max depth,34 min samples leaf,35 max features,36

and min samples split.37 We perform model selection with a grid search of the combinations of the four

hyperparameters.38 For each hyperparameter combination, we evaluate the model with five-fold cross valida-

tion using scikit-learn’s cross validate function. In each iteration of the cross-validation, the function

fits a random forest on four out of five cross-validation folds and then computes the cross-validation score

by comparing the model’s predictions with the actual data from the remaining fold. We use the average

log-likelihood (log loss scoring in scikit-learn) as the cross-validation scoring method. We choose the

hyperparameter combination that maximizes the average log-likelihood in cross-validation.

33Ensemble methods use multiple learning models to obtain better predictive performance than could be obtained
from any of the constituent learning models alone.

34This hyperparameter determines the maximum depth of each decision tree.

35This hyperparameter determines the minimum number of observations a node in the decision tree must have
before it can be split.

36This hyperparameter determines the maximum number of features to consider when looking for the best split.

37This hyperparameter determines the minimum number of observations required to split a node.

38To reduce computational burden, we do not perform model selection for all P̂k,q(t). Rather, for each k= 0, ...,4, we

construct Hk,T using all outcomes at stage k and only perform model selection for P̂k,T on this full training set. We
then use the selected hyperparameters to train the models P̂k,q(t) where q(t) = 2005Q1,2005Q2, ...,2015Q4. The set of
max depth used in grid search is [int(log(sample size,2)),2 · int(log(sample size,2)),3 · int(log(sample size,2)),4 ·
int(log(sample size,2))]. The set of min samples leaf used in grid search is [1,2,4]. The set of max features used
in grid search is [0.075,0.1,0.2,0.3,0.4] of the total number of features. The set of min samples split used in grid
search is [8,16,32,64,128].
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After training the models P̂k,q(t) for k = 0,1,2,3,4 for a given q(t), we predict p̂it and V̂ arpit for each

project-trial in Kt(Ht−1)×{1, ..., nt} on day t as follows. We first collect the predictions {p̂(ntree)
ikt } from the

100 individual decision trees in P̂k,q(t)(· |Hk,q(t)−1, ct), and then compute p̂
(ntree)
it =

∏4
k=0 p̂

(ntree)
ikt . There are

100 values in the set {p̂(ntree)
it }. We let

p̂it = p̄
(ntree)
it , (EC.1)

V̂ arpit = s2(p
(ntree)
it ) (EC.2)

Although our implementation of P̂t closely follows the labs’ machine learning approaches, it is not an

exact replica. Below, we outline the challenges in perfectly replicating the labs’ belief formation processes

and highlight where our approach aligns with or diverges from theirs.

• We include as features the union of physicochemical properties identified in the labs’ published articles

(Slabinski et al. 2007a,b, Jaroszewski et al. 2008, Price et al. 2009, Babnigg and Joachimiak 2010, Jahandideh

et al. 2014). This unified set, fixed across all labs and time periods in our implementation, minimizes the risk

of selection on unobservables. In contrast, the actual feature sets used by the labs varied somewhat across

labs and over time. Capturing all these variations is infeasible, as some were likely undocumented in the

published literature over the labs’ extended operational history.

• The construction of certain feature variables relies on software packages that are frequently updated or

have become obsolete. We make every effort to replicate the labs’ original methods as closely as possible (see

Appendix A.4).

• Our implementation includes past trial outcomes as feature variables, whereas the labs’ implementations

did not explicitly incorporate these characteristics. However, it is reasonable to assume that researchers

would update their beliefs about a project’s potential upon observing the success or failure of a trial.

• We use a random forest as the specification of the learning model for all labs and time periods. In

contrast, the machine learning models used by the labs in training and prediction varied across labs and

over time. It is impossible to capture all of these potential variations throughout the labs’ long operational

history, as some may not have been documented in the published articles.

• We set the frequency of “updating” and refitting the chronological series of models at a quarterly interval.

In contrast, the labs’ actual belief-updating frequency is not clearly documented. We chose the quarterly

interval because training models at a finer interval, such as daily, would impose significant computational
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and storage burdens. Additionally, the day-to-day changes in the history Ht were relatively small. Therefore,

to improve computational tractability, we coarsened the frequency of refitting models to a quarterly basis.

• Our model predicts the overall potential for the success of a trial, while the labs’ implementations

focused on predicting the potential for success at bottleneck stages of a trial. Specifically, for stages where

success rates were generally high (such as cloning the DNA), the labs often did not rely explicitly on rigorous

methods like supervised machine learning models to form and update beliefs about success probabilities. In

contrast, they did rely on such models to predict the potential for success in more challenging stages, such

as crystallizing a molecule and studying its structure through X-ray crystallography.

• The output produced by the labs’ models may not exactly match p̂it and V̂ arpit. For example, the

model in Slabinski et al. (2007b) predicted the probability of success as an intermediate outcome, with the

final output being an integer score between 1 and 5, where 1 represented “optimal” and 5 represented “very

difficult.” The labs’ models did not always predict V̂ arpit; when they did, the measure typically involved

comparing predictions from multiple models side by side (Slabinski et al. 2007a,b, Babnigg and Joachimiak

2010, Jahandideh et al. 2014). It is reasonable to believe that the labs understood that predictions from

different models (or submodels of an ensemble model) differed, and they recognized the value in observing

how those predictions varied. However, they did not explicitly formulate an additional metric to measure

this variation. This approach seems consistent with the idea that the labs used heuristics to guide their

exploration of high-variance projects.

B.1.2. Implementation of P ∗
t The implementation of P ∗

t is almost identical to that of P̂t except for

a few deviations. First, a new model P̂k,q(t) (for stages k = 0, ..,4) is trained for every quarter q(t) between

2005Q1 and 2015Q4, incorporating new trial outcomes realized in each quarter. In contrast, a single P ∗
k,t (for

stages k = 0, ...,4) is trained only on the full history HT . HT covers the characteristics and outcomes of all

trials in the sample period. A t subscript is still included for P ∗
k,t to reflect that the predictions from this

model are nonstationary and time-dependent.

Second, P ∗
t uses additional covariates to correct the potential bias of P̂t in predicting trial success proba-

bilities. The model P̂t may be biased in predicting trial success probabilities because it does not account for

the propensity of observing a specific stage of a trial. To see this, think about the probability of success of

stage 1 of a trial. We observe stage 1 of a trial only if stage 0 of the trial was successful. If the probabilities

of success of stages 0 and 1 are positively correlated, then we are more likely to observe stage 1 of trials that
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are more likely to succeed in stage 1. Therefore, models trained with the observed data on stage 1 would

produce prediction results that are positively biased. Correcting this bias is simple if we assume that the

selection into observing a given stage is only based on observable characteristics of trials. In that case, we

can use the predicted probabilities of success at previous stages as propensity scores. As such, we include

p∗i,k′,tk′ , the predicted probability of success at each earlier stage k′ < k, as a covariate when we train P ∗
k,t.

The labs’ published articles offer no discussion about this source of bias, so we do not include these variables

in training P̂t.

To further improve the predictive power of P ∗
t , we incorporate project-trial characteristics that the labs

did not include in their machine learning models. Specifically, we add keywords and genes associated with

molecule i, as well as the year in which stage k began when training each P ∗
k,t (for stages k = 0, ...,4).

Including the stage start year helps capture nonstationarity in success probabilities, reflecting retooling and

phase changes in the labs over time, as noted in our conversations with NIH program officers.

Another key difference between P ∗
t and P̂t lies in whether P ∗

t should include covariates capturing previous

trial outcomes, publications, and structures within the same protein families. In simulations, all previous trial

outcomes are simulated, and thus do not reflect any change in the project’s underlying scientific properties.

Accordingly, the counterfactual outcome of a trial should not depend on its simulated prior outcomes.

However, one could also argue that in practice, labs may learn from prior successes or failures—improving

the execution of future trials even if the scientific properties of the molecule remain constant.

To address this ambiguity, we train two versions of P ∗
t : one that includes previous outcomes, publications,

and structures as features, and one that excludes them. To determine which version better fits each lab, we

simulate trial allocations and outcomes as described in Section 7.1, using each lab’s estimated allocation policy

(UCB1+Time Discounting) and the corresponding parameter estimates reported in Appendix Tables D1–

D4. We use the same learning model specification (random forest), features, and hyperparameters as in our

replication of the labs’ learning models P̂t.

The underlying logic is that if we simulate using the labs’ estimated allocation policies, then a well-specified

P ∗
t model should reproduce patterns similar to those observed in the actual data. Appendix Table B1 presents

simulated trial allocations and outcomes from 2005–2015 alongside the observed patterns. The results indicate

that for JCSG and NESG, including previous outcomes, publications, and structures as features in P ∗
t yields

simulations that more closely match the actual data. In contrast, for MCSG and NYSGRC, the version of
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P ∗
t that excludes these features performs better. Accordingly, in all simulations reported in Section 7 and

Appendix D, we use the inclusive version of P ∗
t for JCSG and NESG, and the exclusive version for MCSG

and NYSGRC.
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Appendix C: Likelihood Function Specifications

Table C1: Likelihood Function Specifications Across Behavioral Trial Allocation Models

Model π Likelihood Function Specification Pr(aijt;θθθ,λ1, λ2,Ht−1, ct, π)

Greedy
exp(ζ)

exp(ζ)+exp(ζthr)
, where

ζ = x̂ijt(p̂it,θθθ|Ht−1, ct),

ζthr = x̂thr,t(θθθ|Ht−1, ct).

Gittins Index
exp(ζ)

exp(ζ)+exp(ζthr)
, where

ζ = x̂ijt(p̂it,θθθ|Ht−1, ct)+ψ(·)
√
V ar(x̂ijt(p̂it,θθθ|Ht−1, ct),

ζthr = x̂thr,t(θθθ|Ht−1, ct)+ψ(·)
√
V ar(x̂thr,t(θθθ|Ht−1, ct)).

Thompson Sampling
1
100

∑100
DRAW=1

exp(ζDRAW )
exp(ζDRAW )+exp(ζDRAW

thr )
, where

ζDRAW = x̂ijt(p̂
DRAW
it ,θθθ|Ht−1, ct),

ζDRAW
thr = x̂DRAW

thr,t (θθθ|Ht−1, ct).

ζDRAW
thr is from the nt-th largest index value among all project-trials

in day t’s choice set, computed from the set of draws {p̂DRAW
it , i ∈

Kt(Ht(t− 1)} for these projects. A total of 100 such sets of draws
were generated.

Explore-Then-Commit Let N 0
t be the number of projects without prior trials on day t. If

N 0
t ≥ nt:

Pr(aijt = 1 | θθθ,Ht−1) =

{
nt

N0
t
, for trial j = 1 of these projects,

0, otherwise.

If N 0
t <nt:

Pr(aijt = 1 | θθθ,Ht−1) =

{
1, for trial j = 1 of these projects,

exp(ζ)

exp(ζ)+exp(ζthr)
, otherwise,

where
ζ = x̂ijt(p̂it,θθθ|Ht−1, ct),

ζthr = x̂thr,t(θθθ|Ht−1, ct),

and ζthr is from the (nt − N 0
t )-th largest index value among the

remaining project-trials.
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UCB1
exp(ζ)

exp(ζ)+exp(ζthr)
, where

ζ = x̂ijt(p̂it,θθθ|Ht−1, ct)+

√
exp(λ1)

[Ji(t− 1)+ j]
,

ζthr = x̂thr,t(θθθ|Ht−1, ct)+

√
exp(λ1)

[Jthr(t− 1)+ jthr]
.

1st-Degree Polynomial
exp(ζ)

exp(ζ)+exp(ζthr)
, where

ζ = x̂ijt(p̂it,θθθ|Ht−1, ct)+λ1[Ji(t− 1)+ j],

ζthr = x̂thr,t(θθθ|Ht−1, ct)+λ1[Jthr(t− 1)+ jthr].

2nd-Degree Polynomial
exp(ζ)

exp(ζ)+exp(ζthr)
, where

ζ = x̂ijt(p̂it,θθθ|Ht−1, ct)+λ1[Ji(t− 1)+ j] +λ2[Ji(t− 1)+ j]2,

ζthr = x̂thr,t(θθθ|Ht−1, ct)+λ1[Jthr(t− 1)+ jthr] +λ2[Jthr(t− 1)+ jthr]
2.

Flexible Variance
exp(ζ)

exp(ζ)+exp(ζthr)
, where

ζ = x̂ijt(p̂it,θθθ|Ht−1, ct)+λ1

√
V ar(x̂ijt(p̂it,θθθ|Ht−1, ct)),

ζthr = x̂thr,t(θθθ|Ht−1, ct)+λ1

√
V ar(x̂thr,t(θθθ|Ht−1, ct)).

Flex Var+Time Discount-
ing

exp(ζ)
exp(ζ)+exp(ζthr)

, where

ζ = x̂ijt(p̂it,θθθ|Ht−1, ct)+λ1

√
V ar(x̂ijt(p̂it,θθθ|Ht−1, ct))−λ2[t− τi(t− 1)],

ζthr = x̂thr,t(θθθ|Ht−1, ct)+λ1

√
V ar(x̂thr,t(θθθ|Ht−1, ct))−λ2[t− τthr(t− 1)].

UCB1+Time Discounting
exp(ζ)

exp(ζ)+exp(ζthr)
, where

ζ = x̂ijt(p̂it,θθθ|Ht−1, ct)+

√
exp(λ1)

Ji(t− 1)+ j
−λ2[t− τi(t− 1)],

ζthr = x̂thr,t(θθθ|Ht−1, ct)+

√
exp(λ1)

Jthr(t− 1)+ jthr
−λ2[t− τthr(t− 1)].

Note: For notation definitions, please see Table 2. For Thompson Sampling, since p̂DRAW
it values are drawn from

the distribution of predicted probabilities of success generated by the RF model P̂t(· |Ht− 1, ct), holding everything
else fixed, threshold values and the likelihood can still differ across different sets of draws. We compute an average
likelihood over 100 such sets. For Explore-Then-Commit, projects without prior trials have infinite Vijt values for
their first trial. We set the allocation probability for these first trials to 1 if the number of such projects, N0

t , is
smaller than the daily capacity nt, and to nt

N0
t
if N0

t ≥ nt.
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Appendix D: Additional Details on the Simulation Procedure and Additional
Results

In Algorithm 4, we provide additional details of the simulation procedure. To simplify the presentation and

aid understanding, the version in Algorithm 3 in the main text omits the specifics of outcome simulation.

There, the process is described simply as generating a p∗it from our model of the true data-generating process

P ∗
t and drawing a trial outcome (0/1) from Bernoulli(p∗it). In reality, the simulation is more complex: we

simulate stage-specific outcomes for each trial using P ∗
k,t, as described in Appendix Section B.1.2. To enable

plotting time trends in trial allocation and outcomes, we also simulate the completion dates for each stage

of each trial. Algorithm 4 presents the full details of this procedure.
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Algorithm 4: Simulation of Sequential Interaction between the Lab and Nature (with
Additional Details on Simulating Stage-Specific Outcomes and Date Generation)

Input:
Agent choices: Reward weights θθθ′ ; /* set to θ̂θθ from best-fitting model */

Learning model specification ; /* RF, neural net, etc.; which features? */
Allocation policy π′ ; /* Greedy, Gittins, etc. */
Pilot phase {2000/01/01, ..., t′− 1};
Post-pilot period T ′ = {t′, ...,2015/12/31} where t′ is transition date;

Exogenous: Actual, full trial history HT ;
True stage-specific success probability models P ∗

k,t(· |HT , ct) for stages k ∈ {0,1,2,3,4};
Capacity constraints {nt}t∈T ′ ; ; /* actual daily number of trials allocated */
Pilot phase history H ′

t′−1 =Ht′−1 ; /* actual history prior to t′ */
New projects entering K ′

t(H
′
t−1) each day ; /* actual project arrivals */

Evaluation horizon {2005/01/01, ...,2015/12/31} ; /* actual PSI Phase 2 & 3 */
For each period t∈ T ′:

Observe available projects K ′
t(H

′
t−1) and train learning model P̂ ′

t (·|H ′
t−1, c

′
t);

For each potential trial (i, j)∈K ′
t(H

′
t−1)×{1, ..., nt}:

Compute index value V ′
ijt based on predicted p′it from P̂ ′

t (· |H ′
t−1, c

′
t), θθθ

′ and π′;
End

Sort all trials in descending order of V̂ ′
ijt;

Select top nt trials according to lab capacity constraint;
For each allocated trial (i, j) in allocation set aaa′t:

Set stage 0 start date: t∗ = t;
For stage k= 0 to 4:

Generate success probability p∗i,k,t∗ |H ′
t−1, c

′
t, P

∗
k,t(· |HT , cT ) ; /* true success

probability model predicting based on current history and context */
Draw stage duration ∆tk from empirical distribution ; /* Lab-specific empirical
distribution of stage k durations */

Draw trial success outcome ∼Bernoulli(p∗i,k,t∗);
if outcome = 0 (failure) then

Terminate trial;
break;

end
Update stage start: t∗ = t∗ +∆tk;

End

Generate reward x′
ijt = c′it · θ̂θθ if this is the first successful trial of i, x′

ijt = 0 otherwise;
End
Update H ′

t with new allocations and rewards;
End

Output: Counterfactually simulated long-term rewards
∑T ′

t=t′

∑
(i,j)∈aaa′

t
x′
ijt
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Figure D1 Proportion of Biomedically Important Trials Under Different Allocation Models Over Time

(a) JCSG (b) MCSG

(c) NESG (d) NYSGRC*

Note: See notes from Figure 2 for additional details.
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Figure D2 Proportion of Novel Trials Under Different Allocation Models Over Time

(a) JCSG (b) MCSG

(c) NESG (d) NYSGRC*

Note: See notes from Figure 2 for additional details.
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Figure D3 Trial Median Sequence Length Under Different Allocation Models Over Time

(a) JCSG (b) MCSG

(c) NESG (d) NYSGRC*

Note: See notes from Figure 2 for additional details.
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Figure D4 Number of Unique Structures Produced Under Different Allocation Models Over Time

(a) JCSG (b) MCSG

(c) NESG (d) NYSGRC*

Note: See notes from Figure 2 for additional details.
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Figure D5 Proportion of Biomedically Important Structures Under Different Allocation Models Over Time

(a) JCSG (b) MCSG

(c) NESG (d) NYSGRC*

Note: See notes from Figure 2 for additional details.
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Figure D6 Proportion of Novel Unique Structures Under Different Allocation Models Over Time

(a) JCSG (b) MCSG

(c) NESG (d) NYSGRC*

Note: See notes from Figure 2 for additional details.
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Figure D7 Unique Structure Median Sequence Length Under Different Allocation Models Over Time

(a) JCSG (b) MCSG

(c) NESG (d) NYSGRC*

Note: See notes from Figure 2 for additional details.
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Figure D8 Simulated Reward Trajectories Under Alternative PSI Pilot Phase Duration

(a) JCSG, UCB1+Time Discounting (b) JCSG, Explore-Then-Commit

(c) MCSG, UCB1+Time Discounting (d) NESG, UCB1+Time Discounting

(e) NYSGRC*, UCB1+Time Discounting

Note: Each line represents simulations with different starting points. The “2005 (actual)” series begins in 2005, the
actual end of the Pilot Phase. The “2004,” “2003,” and earlier series reflect counterfactual scenarios where the Pilot
Phase ends earlier, with simulations beginning in those respective years. All simulations use the allocation model
specified in the corresponding subfigure title. Values shown are annual rewards averaged across three simulation runs
for each scenario. Because the reward function is not estimated for 2000–2004, rewards are displayed as zero for this
period.
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Figure D9 Proportion of Biomedically Important Trials Under Alternative PSI Pilot Phase Duration

(a) JCSG, UCB1+Time Discounting (b) JCSG, Explore-Then-Commit

(c) MCSG, UCB1+Time Discounting (d) NESG, UCB1+Time Discounting

(e) NYSGRC*, UCB1+Time Discounting

Note: See notes from Appendix Figure D8 for additional details.



e-companion to Zhuo: Exploitation vs. Exploration in Research Labs ec33

Figure D10 Proportion of Novel Trials Under Alternative PSI Pilot Phase Duration

(a) JCSG, UCB1+Time Discounting (b) JCSG, Explore-Then-Commit

(c) MCSG, UCB1+Time Discounting (d) NESG, UCB1+Time Discounting

(e) NYSGRC*, UCB1+Time Discounting

Note: See notes from Appendix Figure D8 for additional details.
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Figure D11 Trial Median Sequence Length Under Alternative PSI Pilot Phase Duration

(a) JCSG, UCB1+Time Discounting (b) JCSG, Explore-Then-Commit

(c) MCSG, UCB1+Time Discounting (d) NESG, UCB1+Time Discounting

(e) NYSGRC*, UCB1+Time Discounting

Note: See notes from Appendix Figure D8 for additional details.
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Figure D12 Number of Unique Structures Produced Under Alternative PSI Pilot Phase Duration

(a) JCSG, UCB1+Time Discounting (b) JCSG, Explore-Then-Commit

(c) MCSG, UCB1+Time Discounting (d) NESG, UCB1+Time Discounting

(e) NYSGRC*, UCB1+Time Discounting

Note: See notes from Appendix Figure D8 for additional details.
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Figure D13 Proportion of Biomedically Important Structures Under Alternative PSI Pilot Phase Duration

(a) JCSG, UCB1+Time Discounting (b) JCSG, Explore-Then-Commit

(c) MCSG, UCB1+Time Discounting (d) NESG, UCB1+Time Discounting

(e) NYSGRC*, UCB1+Time Discounting

Note: See notes from Appendix Figure D8 for additional details.
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Figure D14 Proportion of Novel Structures Under Alternative PSI Pilot Phase Duration

(a) JCSG, UCB1+Time Discounting (b) JCSG, Explore-Then-Commit

(c) MCSG, UCB1+Time Discounting (d) NESG, UCB1+Time Discounting

(e) NYSGRC*, UCB1+Time Discounting

Note: See notes from Appendix Figure D8 for additional details.
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Figure D15 Unique Structure Median Sequence Length Under Alternative PSI Pilot Phase Duration

(a) JCSG, UCB1+Time Discounting (b) JCSG, Explore-Then-Commit

(c) MCSG, UCB1+Time Discounting (d) NESG, UCB1+Time Discounting

(e) NYSGRC*, UCB1+Time Discounting

Note: See notes from Appendix Figure D8 for additional details.
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Figure D16 Simulated Reward Trajectories Under Improved Information and Learning Model

(a) JCSG, Greedy (b) MCSG, Greedy

(c) NESG, Greedy (d) NYSGRC*, Greedy

Note: The period 2000–2004 represents actual historical data (shown to the left of the red vertical line). Because the
reward function is not estimated for this period, rewards are displayed as zero. The period from 2005 onward (to
the right of the red vertical line) shows simulated rewards. Each line represents annual rewards under the allocation
model indicated in the subfigure title, varying by information level and the magnitude of ϵ error, and averaged over
three simulation runs.
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Figure D17 Simulated Reward Trajectories Under Improved Information and Learning Model, Continued

(a) JCSG, Explore-Then-Commit (b) MCSG, UCB1+Time Discounting

(c) NESG, UCB1+Time Discounting (d) NYSGRC*, UCB1+Time Discounting

Note: See notes from Appendix Figure D16 for additional details.
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